【題目】如圖,在矩形ABCD中,AD=2AB,點M、N分別在邊AD、BC上,連接BM、DN.若四邊形MBND是菱形,則 等于( )
A.
B.
C.
D.
【答案】C
【解析】解:∵四邊形MBND是菱形,
∴MD=MB.
∵四邊形ABCD是矩形,
∴∠A=90°.
設AB=x,AM=y,則MB=2x﹣y,(x、y均為正數(shù)).
在Rt△ABM中,AB2+AM2=BM2 , 即x2+y2=(2x﹣y)2 ,
解得x= y,
∴MD=MB=2x﹣y= y,
∴ = = .
故選:C.
【考點精析】掌握勾股定理的概念和菱形的性質是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學 來源: 題型:
【題目】一元二次方程x2﹣2x+7=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)a、b、C滿足|a﹣1|+(3a﹣2b﹣7)2+|3b+5c﹣4|=0,求:(﹣3ab)(﹣a2c)(6ab2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過平移得到的圖形中的每一個點與原圖形中的對應點所連線段( )
A. 平行 B. 在同一條直線上
C. 相等 D. 平行(或在同一條直線上)且相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一組數(shù)據(jù)3,3,2,3,6,3,10,3,6,3,2:①眾數(shù)是3;②眾數(shù)與中位數(shù)的數(shù)值不等;③中位數(shù)與平均數(shù)的數(shù)值相等;④平均數(shù)與眾數(shù)的數(shù)值相等,其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把點P(﹣2,1)繞原點O順時針旋轉180°,所得到的對應點P′的坐標為( )
A.(2,﹣1)
B.(﹣2,1)
C.(2,1)
D.(﹣2,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com