【題目】如圖,點A為函數(shù) 圖象上一點,連結OA,交函數(shù) 的圖象于點B,點C是x軸上一點,且AO=AC,求△ABC的面積.
【答案】△ABC的面積為12.
【解析】
根據(jù)題意可以分別設出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△ABC的面積.
解:如圖,
解:設點A的坐標為(a,),點B的坐標為(b,),
∵點C是x軸上一點,且AO=AC,
∴點C的坐標是(2a,0),
設過點O(0,0),A(a,)的直線的解析式為:y=kx,
∴,
解得,k=,
又∵點B(b,)在y=上,
∴,解得,或(舍去),
∴S△ABC=S△AOC﹣S△OBC=,
故答案為:12.
“點睛”本題考查反比例函數(shù)的圖象、三角形的面積、等腰三角形的性質,解題的關鍵是明確題意,找出所求問題需要的條件.
科目:初中數(shù)學 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農村生產,已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調運才能使總運費最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】①如圖1,有一個三角形,它的內角分別為:25°,50°,105°請你把這個三角形分成兩個等腰三角形.畫出你分割的示意圖并標注必要的角度。
②如圖2,有兩個直角三角形,如圖所示,∠C=∠F=90°,∠A, ∠B, ∠D, ∠E的度數(shù)分別是,它們互不相等。請你將這兩個三角形分別分割成兩個三角形,使所分成的兩個三角形與所分成的兩個三角形角度對應相等。畫出你分割的示意圖并用字母標注必要的角度。
③如圖3,在正方形所在平面內找一點,使其與正方形中的每一邊所構成的三角形均為等腰三角形,這樣的點有________個.
④如圖4,在等邊△ABC所在平面內找一點Q,使其與等邊三角形中的每一邊所構成的三角形均為等腰三角形,這樣的點有________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃召開“誠信在我心中”主題教育活動,需要選拔活動主持人,經過全校學生投票推薦,有2名男生和1名女生被推薦為候選主持人.
(1)小明認為,如果從3名候選主持人中隨機選拔1名,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說法嗎?為什么?
(2)如果從3名候選主持人中隨機選拔2名,請通過列表或畫樹狀圖求選拔的2名主持人恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關系,寫出你的結論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,在邊長為1的正方形網(wǎng)格中,△AOB的頂點均在格點上,點A,B的坐標分別是A(3,1),B(2,3).
(1)請在圖中畫出△AOB關于y軸的對稱△A′OB′,點A′的坐標為 ,點B′的坐標為 ;
(2)請寫出A′點關于x軸的對稱點A′'的坐標為 ;
(3)求△A′OB′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點F,連接CF,則下列結論,
①BF=AC;
②∠FCD=45°;
③若BF=2EC,則△FDC周長等于AB的長;
④若∠FBD=30°,BF=2,則AF=﹣1.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE:CE=3:2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.
(1)線段AE= ;
(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數(shù)關系式,并寫出t的取值范圍;
(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑;
(4)如圖2,將△AEC沿直線AE翻折,得到△AEC',連結AC',如果∠ABF=∠CBC′,求t值.(直接寫出答案,不要求解答過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com