【題目】如圖,在ABC中,ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點(diǎn)F,連接CF,則下列結(jié)論,

①BF=AC;

②∠FCD=45°;

若BF=2EC,則FDC周長等于AB的長;

FBD=30°,BF=2,則AF=﹣1.其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】

想辦法證明ADC≌△BDF即可一一判斷.

∵△ABC中,AD,BE分別為BC、AC邊上的高,∠ABC=45°,

AD=BD,DAC和∠FBD都是∠ACD的余角,

而∠ADB=ADC=90°,

∴△BDF≌△ADC,

BF=AC,故①正確,

FD=CD,

∴∠FCD=CFD=45°,故②正確;

BF=2EC,根據(jù)①得BF=AC,

AC=2EC,

EAC的中點(diǎn),

BE為線段AC的垂直平分線,

AF=CF,BA=BC,

AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,

FDC周長等于AB的長,故③正確.

∵∠FBD=30°,BF=2,

DF=1,BD=AD=,

AF=﹣1,故④正確,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB中,OA=OB=4∠A=30°,AB⊙O相切于點(diǎn)C,則圖中陰影部分的面積為

.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知: ,點(diǎn)……在射線ON上,點(diǎn)……在射線OM上,、、……均為等邊三角形,若,則的邊長為(

A. 6 B. 12 C. 32 D. 64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)Cx軸上一點(diǎn),且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BCy軸,垂足為點(diǎn)C,連結(jié)AB,AC.

(1)求該反比例函數(shù)的解析式;

(2)若△ABC的面積為6,求直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請(qǐng)用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形(各邊相等,各內(nèi)角為直角),EBC邊上一點(diǎn),FCD上的一點(diǎn).

1)若CFE的周長等于正方形ABCD的周長的一半,求證:∠EAF=45°;

2)在(1)的條件下,若DF=2CF=4,CE=3,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P

1)當(dāng)∠A=40°,ABC=60°時(shí),求∠BPC的度數(shù);

2)當(dāng)∠A=α°時(shí),求∠BPC的度數(shù).(用α的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條街AB上,甲由AB步行,乙騎車由BA行駛,乙的速度是甲的速度的3倍,此時(shí)公共汽車由始發(fā)站A開出向B行進(jìn),且每隔x分發(fā)一輛車,過了一段時(shí)間,甲發(fā)現(xiàn)每隔10分有一輛公共汽車追上他,而乙感到每隔5分就碰到一輛公共汽車,那么在始發(fā)站公共汽車發(fā)車的間隔時(shí)間x=_____分鐘.

查看答案和解析>>

同步練習(xí)冊(cè)答案