【題目】如圖,已知點M、N分別為ABCD的邊CD、AB的中點,連接AM、CN.
(1)證明:AM=CN;
(2)過點B作BH⊥AM于點H,交CN于點E,連接CH,判斷線段CB、CH的數(shù)量關(guān)系,并說明理由.
【答案】
(1)AM∥NC,
理由:∵點M、N分別為ABCD的邊CD、AB的中點,
∴AB=CD,MC=AN,AB∥CD,
∴AN∥MC,AN=MC,
∴四邊形ANCM是平行四邊形,
∴AM∥NC
(2)解:BC=HC,
理由:∵AM∥NC,AN=BN,
∴BE=HE,
∵BH⊥AM,
∴EB⊥NE,
∴NC垂直平分HB,
∴HC=BC
【解析】(1)利用平行四邊形的性質(zhì)得出AN∥MC,AN=CM,進(jìn)而利用平行四邊形的判定得出答案;(2)利用三角形中位線定理的推論得出HE=EB,以及利用平行線的性質(zhì)得出NC⊥HB,再利用線段垂直平分線的性質(zhì)得出答案.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點P(2,3),點D是正比例函數(shù)圖象上的一點,過點D作y軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點A,過點A作x軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點E.
(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.
(2)當(dāng)點D的縱坐標(biāo)為9時,求:點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一游戲棋盤和一個質(zhì)地均勻的正四面體骰子(各面依次標(biāo)有1,2,3,4四個數(shù)字).游戲規(guī)則是游戲者每擲一次骰子,棋子按著地一面所示的數(shù)字前進(jìn)相應(yīng)的格數(shù).例如:若棋子位于A處,游戲者所擲骰子著地一面所示數(shù)字為3,則棋子由A處前進(jìn)3個方格到達(dá)B處.請用畫樹形圖法(或列表法)求擲骰子兩次后,棋子恰好由A處前進(jìn)6個方格到達(dá)C處的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,則下列結(jié)論中不正確的是( )
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點D、E . 若∠A=60°,BC=6,則圖中陰影部分的面積為
A.π
B.π
C.π
D.3π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點E在CB的延長線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE且與AE交于點G.
(1)求證:GF=BF.
(2)在BC邊上取點M,使得BM=BE,聯(lián)結(jié)AM交DE于點O.求證:FOED=ODEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com