已知:如圖,矩形ABCD中,AE=DE,BE的延長(zhǎng)線與CD的延長(zhǎng)線相交于點(diǎn)F,求證:S矩形ABCD=S△BCF

證法一:在Rt△BAE和Rt△FDE中,

∵∠BAE=∠FDE=90°,AE=DE,∠AEB=∠DEF,

∴△BAE≌△FDE,∴AB=DF,

∵四邊形ABCD是矩形,∴AB=DC,∴FC=2AB.

∴S=×BC×FC=BC·AB.

∵S矩形ABCD=BC·AB,∴S矩形ABCD=S△FBC;

證法二:∵∠BAE=∠FDE=90°,AE=DE.∠AEB=∠DEF,

∴△BAE≌△FDE.∴S△BAE = S△FDE,

∵S△FBC = S△FDE +S四邊形BCDE,

∵S矩形ABCD=S△BAE+S四邊形BCDE

∴S矩形ABCD= S△BCF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,矩形ABCD中,E、F是AB上的兩點(diǎn),且AF=BE.求證:∠ADE=∠BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、已知,如圖,矩形ABCD中,E是CD的中點(diǎn),連接BE并延長(zhǎng)BE交AD的延長(zhǎng)線于點(diǎn)F,連接AE.
(1)求證:AD=DF;
(2)若AD=3,AE⊥BE,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,矩形ABCD中,AD=6,DC=7,菱形EFGH的三個(gè)頂點(diǎn)E,G,H分別在矩形ABCD的邊AB,CD,DA精英家教網(wǎng)上,AH=2,連接CF.
(1)若DG=2,求證四邊形EFGH為正方形;
(2)若DG=6,求△FCG的面積;
(3)當(dāng)DG為何值時(shí),△FCG的面積最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,矩形ABCD中,點(diǎn)E在邊AB上,∠DEB的平分線EF交BC的延長(zhǎng)線于點(diǎn)F,且AB=BF,連接DF.
(1)若tan∠FDC=
12
,AD=1,求DF的長(zhǎng);
(2)求證:DE=BE+CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案