【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD
(2)△OAB是等腰三角形.

【答案】
(1)

證明:∵AC⊥BC,BD⊥AD,

∴∠ADB=∠ACB=90°,

在Rt△ABC和Rt△BAD中,

,

∴Rt△ABC≌Rt△BAD(HL),

∴BC=AD,


(2)

證明:∵Rt△ABC≌Rt△BAD, ∴∠CAB=∠DBA,
∴OA=OB,
∴△OAB是等腰三角形.


【解析】(1)根據AC⊥BC,BD⊥AD,得出△ABC與△BAD是直角三角形,再根據AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可證出BC=AD,(2)根據Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,從而證出OA=OB,△OAB是等腰三角形.
【考點精析】掌握等腰三角形的判定是解答本題的根本,需要知道如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】化簡求值.
3x2y﹣[2xy2﹣6(xy﹣ x2y)+4xy]﹣2xy,其中3(x+2)2+|y﹣1|=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:“兩邊及其中一邊的對角分別相等的兩個三角形不一定全等”.但是,小亮發(fā)現(xiàn):當這兩個三角形都是銳角三角形時,它們會全等,除小亮的發(fā)現(xiàn)之外,當這兩個三角形都是 時,它們也會全等;當這兩個三角形其中一個三角形是銳角三角形,另一個是 時,它們一定不全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)29×20.18+72×20.18+13×20.18-14×20.18;

(2)1002-992+982-972+…+42-32+22-12.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B,F(xiàn),C,E在直線l上(F,C之間不能直接測量),點A,D在l異側,測得AB=DE,AC=DF,BF=EC.

(1)求證:ABC≌△DEF;

(2)指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次三項式x2-4x+3配方的結果是( 。
A.(x-2)2+7
B.(x-2)2-1
C.(x+2)2+7
D.(x+2)2-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算中,正確的是( 。
A.2a2+3a2=5a4
B.(a﹣b)2=a2﹣b2
C.(a33=a6
D.(﹣2a23=﹣8a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能確定△ABC是直角三角形的條件有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把命題相等的角是對頂角改寫成如果,那么…”的形

查看答案和解析>>

同步練習冊答案