【題目】列方程或方程組解應(yīng)用題: 為了響應(yīng)市政府“綠色出行”的號(hào)召,小張上下班由自駕車方式改為騎自行車方式.已知小張單位與他家相距20千米,上下班高峰時(shí)段,自駕車的平均速度是自行平均車速度的2倍,騎自行車所用時(shí)間比自駕車所用時(shí)間多 小時(shí).求自駕車平均速度和自行車平均速度各是多少?
【答案】解:自行車平均速度為x km/h,自駕車平均速度為2x km/h,由題意,得
解方程得:x=15,
經(jīng)檢驗(yàn):x=15是所列方程的解,且符合實(shí)際意義,
∴自駕車的速度為:2x=30.
答:自行車速度為15km/h,汽車的速度為30km/h
【解析】自行車平均速度為xkm/h,自駕車平均速度為2x km/h,就可以求出表示出騎自行車的時(shí)間和自駕車的時(shí)間,根據(jù)時(shí)間之間的等量關(guān)鍵建立方程求出其解即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用分式方程的應(yīng)用,掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約登山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息,下列說(shuō)法正確的個(gè)數(shù)為( ) (1 )甲登山上升的速度是每分鐘10米;(2)乙在A地時(shí)距地面的高度b為30米;(3)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山1分鐘時(shí),距地面的高度為15米;(4)登山時(shí)間為4分鐘,9分鐘,15分鐘時(shí),甲、乙兩人距地面的高度差為50米.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=k(x+1)(x﹣ )與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD為BC邊上的高,動(dòng)點(diǎn)P在AD上,從點(diǎn)A出發(fā),沿A→D方向運(yùn)動(dòng),設(shè)AP=x,△ABP的面積為S1 , 矩形PDFE的面積為S2 , y=S1+S2 , 則y與x的關(guān)系式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點(diǎn)M在OC上,AM的延長(zhǎng)線交⊙O于點(diǎn)G,交過(guò)C的直線于F,∠1=∠2,連結(jié)CB與DG交于點(diǎn)N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點(diǎn)M是CO的中點(diǎn),⊙O的半徑為4,cos∠BOC= ,求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
上課時(shí)李老師提出這樣一個(gè)問(wèn)題:對(duì)于任意實(shí)數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價(jià)于x2﹣2x﹣1>a,設(shè)函數(shù)y1=x2﹣2x﹣1,y2=a,畫(huà)出兩個(gè)函數(shù)的圖象的示意圖,于是原問(wèn)題轉(zhuǎn)化為函數(shù)y1的圖象在y2的圖象上方時(shí)a的取值范圍.
(1)請(qǐng)結(jié)合小捷的思路回答:
對(duì)于任意實(shí)數(shù)x,關(guān)于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是 .
(2)參考小捷思考問(wèn)題的方法,解決問(wèn)題:
關(guān)于x的方程x﹣4= 在0<a<4范圍內(nèi)有兩個(gè)解,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為對(duì)角線AC上一點(diǎn),且AE=AB,則∠BED的度數(shù)是度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年3月31日是全國(guó)中小學(xué)生安全教育日,某校全體學(xué)生參加了“珍愛(ài)生命,預(yù)防溺水”專題活動(dòng),學(xué)習(xí)了游泳“五不準(zhǔn)”,為了了解學(xué)生對(duì)“五不準(zhǔn)”的知曉情況,隨機(jī)抽取了200名學(xué)生作調(diào)查,請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖解答問(wèn)題:
(1)求在這次調(diào)查中,“能答5條”人數(shù)的百分比和“僅能答3條”的人數(shù);
(2)若該校共有2000名學(xué)生,估計(jì)該校能答3條不準(zhǔn)以上(含3條)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com