精英家教網 > 初中數學 > 題目詳情

【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經過2.5分鐘儲存罐注滿,關閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當輸出的水泥總量達到8立方米時,關閉輸出口.儲存罐內的水泥量y(立方米)與時間x(分)之間的部分函數圖象如圖所示.

(1)求每分鐘向儲存罐內注入的水泥量.

(2)當3≤x≤5.5時,求yx之間的函數關系式.

(3)儲存罐每分鐘向運輸車輸出的水泥量是   立方米,從打開輸入口到關閉輸出口共用的時間為   分鐘.

【答案】(1)5立方米;(2)y=4x+3;(3)1,11.

【解析】

1)用體積變化量除以時間變化量即可求出注入速度;

(2)根據題目數據利用待定系數法求解;

(3)由(2)比例系數k=4即為兩個口同時打開時水泥儲存罐容量的增加速度,則輸出速度為5﹣4=1,再根據總輸出量為8求解即可.

1)每分鐘向儲存罐內注入的水泥量為15÷3=5立方米;

(2)設y=kx+b(k≠0),把(3,15)(5.5,25)代入,則有

,解得:,

∴當3≤x≤5.5時,yx之間的函數關系式為y=4x+3;

(3)由(2)可知,輸入輸出同時打開時,水泥儲存罐的水泥增加速度為4立方米/分,則每分鐘輸出量為5﹣4=1立方米;

只打開輸出口前,水泥輸出量為5.5﹣3=2.5立方米,之后達到總量8立方米需輸出8﹣2.5=5.5立方米,用時5.5分鐘

∴從打開輸入口到關閉輸出口共用的時間為:5.5+5.5=11分鐘,

故答案為:1,11.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,,分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

(1)B出發(fā)時與A相距___千米。

(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是___小時。

(3)B出發(fā)后___小時與A相遇。

(4)B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,___小時與A相遇,相遇點離B的出發(fā)點___千米。在圖中表示出這個相遇點C.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:若,則稱是關于的平衡數.

是關于的平衡數, 是關于的平衡數. (用含的代數式表示)

,判斷是否是關于的平衡數,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】剪紙是中國傳統(tǒng)的民間藝術,它畫面精美,風格獨特,深受大家喜愛,現有三張不透明的卡片,其中兩張卡片的正面圖案為金魚,另外一張卡片的正面圖案為蝴蝶,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是金魚的概率.(圖案為金魚的兩張卡片分別記為A1、A2,圖案為蝴蝶的卡片記為B)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABBC,DCBC,AE 平分∠BADDE 平分∠ADC,以下結論:①∠AED90°;②點 E BC 的中點;③DEBE;ADABCD;其中正確的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的對稱中心為坐標原點O,ADy軸于點E(點A在點D的左側),經過E、D兩點的函數y=﹣x2+mx+1(x≥0)的圖象記為G1,函數y=﹣x2﹣mx﹣1(x<0)的圖象記為G2,其中m是常數,圖象G1、G2合起來得到的圖象記為G.設矩形ABCD的周長為L.

(1)當點A的橫坐標為﹣1時,求m的值;

(2)求Lm之間的函數關系式;

(3)當G2與矩形ABCD恰好有兩個公共點時,求L的值;

(4)設G在﹣4≤x≤2上最高點的縱坐標為y0,當≤y0≤9時,直接寫出L的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中(如圖).已知拋物線y=﹣x2+bx+c經過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉90°,點C落在拋物線上的點P處.

(1)求這條拋物線的表達式;

(2)求線段CD的長;

(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點My軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂的仰角為60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

同步練習冊答案