如圖,Rt△ABC的周長為數(shù)學(xué)公式,以AB、AC為邊向外作正方形ABPQ和正方形ACMN.若這兩個正方形的面積之和為25 cm2,則△ABC的面積是________ cm2

10
分析:根據(jù)正方形的面積公式,勾股定理求得a2=c2+b2=25,據(jù)此可以求得a=5.又由Rt△ABC的周長為可以求得b+c=3,所以△ABC的面積=bc=[(c+b)2-(c2+b2)].
解答:解:如圖,a2=c2+b2=25,則a=5.
又∵Rt△ABC的周長為,
∴a+b+c=5+3,
∴b+c=3(cm).
∴△ABC的面積=bc=[(c+b)2-(c2+b2)]=[(32-25]=10(cm2).
故答案是:10.
點評:本題考查了勾股定理的應(yīng)用.解答此題時,巧妙地運用了完全平方公式的變形來求△ABC的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負(fù)半軸于E,雙曲線y=
k
x
(x>0)
的圖象經(jīng)過點A,若△BEC的面積為4,則k等于( 。
A、16B、8C、4D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC的兩直角邊分別為1,2,以Rt△ABC的斜邊AC為一直角邊,另一直角邊為1畫第二個△ACD;在以△ACD的斜邊AD為一直角邊,另一直角邊長為1畫第三個△ADE;…,依此類推,第n個直角三角形的斜邊長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC的斜邊AB=10cm,cosA=
35
,則BC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)如圖,Rt△ABC的邊BC位于直線l上,AC=
3
,∠ACB=90°,∠A=30°.若Rt△ABC由現(xiàn)在的位置向右無滑動地旋轉(zhuǎn),當(dāng)點A第3次落在直線l上時,點A所經(jīng)過的路線的長為
(4+
3
)π
(4+
3
)π
(結(jié)果用含有π的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC的一條直角邊AB是⊙O的直徑,AB=8,斜邊交⊙O于D,∠A=30°,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案