在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),等邊三角形OAB的一個頂點(diǎn)為A(2,0),另一個頂點(diǎn)B在第一象限內(nèi).
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線的解析式;
(2)如果一個四邊形是以它的一條對角線為對稱軸的軸對稱圖形,那么我們稱這樣的四邊形為“箏形”.點(diǎn)Q在(1)的拋物線上,且以O(shè)、A、B、Q為頂點(diǎn)的四邊形是“箏形”,求點(diǎn)Q的坐標(biāo);
(3)設(shè)△OAB的外接圓⊙M,試判斷(2)中的點(diǎn)Q與⊙M的位置關(guān)系,并通過計(jì)算說明理由.

解:(1)過B作BC⊥x軸于C.
∵等邊三角形OAB的一個頂點(diǎn)為A(2,0),
∴OB=OA=2,AC=OC=1,∠BOC=60°.
∴BC=
∴B
設(shè)經(jīng)過O、A、B三點(diǎn)的拋物線的
解析式為:
將A(2,0)代入得:,
解得
∴經(jīng)過O、A、B三點(diǎn)的拋物線的解析式為
;

(2)依題意分為三種情況:
(。┊(dāng)以O(shè)A、OB為邊時,
∵OA=OB,
∴過O作OQ⊥AB交拋物線于Q.
則四邊形OAQB是箏形,且∠QOA=30°.
作QD⊥x軸于D,QD=ODtan∠QOD,
設(shè)Q,則
解得:
∴Q
(ⅱ)當(dāng)以O(shè)A、AB為邊時,由對稱性可知Q
(ⅲ)當(dāng)以O(shè)B、AB為邊時,拋物線上不存在這樣的點(diǎn)Q使BOQA為箏形.
∴Q

(3)點(diǎn)Q在⊙M內(nèi).
由等邊三角形性質(zhì)可知△OAB的外接圓圓心M是(2)中BC與OQ的交點(diǎn),
當(dāng)Q時,
∵M(jìn)C∥QD,
∴△OMC∽△OQD.



∴MQ==
,

∴Q在⊙M內(nèi).
當(dāng)Q時,由對稱性可知點(diǎn)Q在⊙M內(nèi).
綜述,點(diǎn)Q在⊙M內(nèi).
分析:(1)先求出點(diǎn)B,則設(shè)拋物線的頂點(diǎn)式,將點(diǎn)A代入即得到方程式;
(2)(。┊(dāng)以O(shè)A、OB為邊時,作QD⊥x軸于D,QD=ODtan∠QOD,QD=ODtan∠QOD,從而求得點(diǎn)Q.(ⅱ)當(dāng)以O(shè)A、AB為邊時,由對稱性求得Q.(ⅲ)當(dāng)以O(shè)B、AB為邊時,拋物線上不存在這樣的點(diǎn)Q使BOQA為箏形.求得點(diǎn)Q.
(3)點(diǎn)Q在⊙M內(nèi).由等邊三角形性質(zhì)可知△OAB的外接圓圓心M是(2)中BC與OQ的交點(diǎn),求得△OMC∽△OQD.從而求得點(diǎn)M,進(jìn)而求得MQ,從而求得點(diǎn)Q的位置.
點(diǎn)評:本題考查了二次函數(shù)的綜合運(yùn)用,(1)先求出點(diǎn)B,則設(shè)拋物線的頂點(diǎn)式,將點(diǎn)A代入即得到方程式;(2)(。┊(dāng)以O(shè)A、OB為邊時,作QD⊥x軸于D,QD=ODtan∠QOD,QD=ODtan∠QOD,從而求得點(diǎn)Q.(ⅱ)當(dāng)以O(shè)A、AB為邊時,由對稱性求得Q.(ⅲ)當(dāng)以O(shè)B、AB為邊時,拋物線上不存在這樣的點(diǎn)Q使BOQA為箏形.求得點(diǎn)Q.(3)點(diǎn)Q在⊙M內(nèi).由等邊三角形性質(zhì)可知△OAB的外接圓圓心M是(2)中BC與OQ的交點(diǎn),求得△OMC∽△OQD.從而求得點(diǎn)M,進(jìn)而求得MQ,從而求得點(diǎn)Q的位置.本題有一定難度,思路性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=-
4
9
(x-2)2
+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
2
5
5

(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若
HE
HF
=
1
2
時,求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動時,是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的精英家教網(wǎng)直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2-2ax+b與x軸的一個交點(diǎn)為A(-1,0),另一個交精英家教網(wǎng)點(diǎn)B在A點(diǎn)的右側(cè);交y軸于(0,-3).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),在x軸上是否存在一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點(diǎn)M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸的正半軸上,點(diǎn)A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點(diǎn)E、F,在△ABC平移的同時,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動,當(dāng)點(diǎn)P達(dá)到點(diǎn)C時,點(diǎn)P停止運(yùn)動,△ABC也隨之停止平移.設(shè)△ABC平移時間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長;
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動時,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)點(diǎn)P沿折線B→A→C運(yùn)動的過程中,是否在某一時刻,使△PEF為等腰三角形?若存在,求出此時t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)如圖,已知在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c(a>0)與x軸相交于A(-1,0),B(3,0)兩點(diǎn),對稱軸l與x軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,且∠ADC的正切值為
12

(1)求頂點(diǎn)D的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)F點(diǎn)是拋物線上的一點(diǎn),且位于第一象限,連接AF,若∠FAC=∠ADC,求F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個單位長度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動,并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).
(1)取BC中點(diǎn)D,問OD+DA是否發(fā)生改變,若會,說明理由;若不會,求出OD+DA;
(2)你認(rèn)為OA的長度是否會發(fā)生變化?若變化,那么OA最長是多少?OA最長時四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當(dāng)OA最長時A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

同步練習(xí)冊答案