【題目】如圖,直線yx1x軸交于點A,與y軸交于點B,BOCB′O′C′是以點A為位似中心的位似圖形,且相似比為13,則點B的對應(yīng)點B′的坐標(biāo)為__________

【答案】(-4,-3)或(2,3)

【解析】

結(jié)合坐標(biāo)軸上點的坐標(biāo)特點,由直線解析式中的y=0、x=0,可得到點A、B的坐標(biāo);根據(jù)位似圖形的性質(zhì),分B′B在點A的同側(cè)和異側(cè)兩種情況進(jìn)行計算即可解答.

∵直線y=x+1x軸交于點A,與y軸交于點B,

x=0可得y=1

y=0可得x=1,

∴點A和點B的坐標(biāo)分別為(1,0);(0,1),

BOCBOC是以點A為位似中心的位似圖形,且相似比為1:3

,

OB′=3AO′=3,

B的坐標(biāo)為(4,3)(2,3).

故答案為:(4,3)(2,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被譽(yù)為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點.學(xué)完了三角函數(shù)知識后,劉明和王華同學(xué)決定用自己學(xué)到的知識測量“大王米”的高度,他們制訂了測量方案,并利用課余時間完成了實地測量.測量項目及結(jié)果如下表:

項目

內(nèi)容

課題

測量鄭州會展賓館的高度

測量示意圖

如圖,在E點用測傾器DE測得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點用測傾器CF測得樓頂B的仰角是β,且點AB、C、D、EF均在同一豎直平面內(nèi)

測量數(shù)據(jù)

α的度數(shù)

β的度數(shù)

EC的長度

測傾器DE,CF的高度

40°

45°

53

1.5

請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為48的兩個正方形ABCDCEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請閱讀下列解題過程.

解一元二次不等式:x2﹣3x>0.

解:設(shè)x2﹣3x=0,解得:x1=0,x2=5.則拋物線y=x2﹣3x與x軸的交點坐標(biāo)為(0,0)和(3,0).畫出二次函數(shù)y=x2﹣3x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0或x>3時函數(shù)圖象位于x軸上方,此時y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集為:x<0或x>3.

通過對上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解答過程中,滲透了下列數(shù)學(xué)思想中的      .(只填序號)

①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想 ④整體思想

(2)一元二次不等式x2﹣3x<0的解集為   

(3)用類似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,DAC的中點,EBC延長線上一點,過AAHBE,連接ED并延長交ABF,交AHH.

(1)求證:AHCE;

(2)如果AB4AF,EH8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以O為位似中心,將五邊形ABCDE放大得到五邊形A′B′C′D′E′,已知OA10 cm,OA′30 cm,若S五邊形A′B′C′D′E′27 cm2,則S五邊形ABCDE__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC中,ACBC,點D是線段AB上一動點,∠EDF繞點D旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持∠A=∠EDF,射線DE與邊AC交于點M,射線DE與邊BC交于點N,連接MN

1)找出圖中的一對相似三角形,并證明你的結(jié)論;

2)如圖②,在上述條件下,當(dāng)點D運動到AB的中點時,求證:在∠EDF繞點D旋轉(zhuǎn)過程中,點D到線段MN的距離為定值.

查看答案和解析>>

同步練習(xí)冊答案