【題目】如圖,在矩形ABCD中,AB4AD5,AD、ABBC分別與O相切于點E、F、G,過點DO的切線交BC于點M,切點為N,則DM的長為( 。

A. B. C. D. 2

【答案】B

【解析】

連接OEOF,ON,OG,在矩形ABCD中,得到∠A=∠B90°,CDAB4,由于AD,AB,BC分別與⊙O相切于EF,G三點,得到∠AEO=∠AFO=∠OFB=∠BGO90°,推出四邊形AFOE,FBGO是正方形,得到AFBFAEBG2,然后由勾股定理列方程即可求出DM

解:連接OEOF,ON,OG,

在矩形ABCD中,

∵∠A=∠B90°,CDAB4

AD,AB,BC分別與⊙O相切于EF,G三點,

∴∠AEO=∠AFO=∠OFB=∠BGO90°,

∴四邊形AFOE,FBGO是正方形,

AFBFAEBG2,

DE3

DM是⊙O的切線,

DNDE3,MNMG,

CM52MN3MN,

RtDMC中,DM2CD2+CM2,

∴(3+NM2=(3NM2+42

NM

DM3+=

故本題答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了手機伴我健康行主題活動,他們隨機抽取部分學(xué)生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學(xué)生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Ax1y1)、Bx2y2)都在某函數(shù)圖象上,且當(dāng)x1x2<0時,y1y2,則此函數(shù)一定不是(  )

A. B. y=﹣2x+1 C. yx2﹣1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=7cm,ABC=30°,點PA點出發(fā),以1cm/s的速度向B點移動,點QB點出發(fā),以2cm/s的速度向C點移動.如果P、Q兩點同時出發(fā),經(jīng)過幾秒后△PBQ的面積等于4cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點Dy軸上,以D為圓心,作⊙Dx軸于點E、F,交y軸于點B、G,點A上,連接ABx軸于點H,連接 AF并延長到點C,使∠FBC=A

(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;

(2)求證:BE2=BH·AB;

(3) 若點E坐標(biāo)為(-4,0),點B的坐標(biāo)為(0,-2),AB=8,求FA兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)yx0)的圖象繞原點O逆時針旋轉(zhuǎn)45°,所得的圖象與原圖象相交于點A,連接OA,以O為圓心,OA為半徑作圓,交函數(shù)yx0)的圖象與點B,則扇形AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤與投資金額成正比例關(guān)系,如圖1所示;種植花卉的利潤與投資金額成二次函數(shù)關(guān)系,如圖2所示.(注:利潤與投資金額的單位均為萬元)

1)分別求出利潤關(guān)于投資金額的函數(shù)關(guān)系;

2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉的金額是萬元,求這位專業(yè)戶能獲取的最大總利潤是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案