【題目】如圖,在Rt△ABC中,∠B=90°AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過(guò)點(diǎn)DDF⊥BC于點(diǎn)F,連接DEEF

1)用t的代數(shù)式表示:AE=   DF=   ;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;

3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

【答案】(1)2t,2t;(2)當(dāng)t=10時(shí),AEFD是菱形;(3)當(dāng)t=s或12s時(shí),△DEF是直角三角形.

【解析】試題分析

1)由已知易得∠C=30°,DFC=90°,這樣結(jié)合已知條件即可得到:DF=CD=2tAE=2t;

(2)由(1)可知,AE=DF,結(jié)合AE∥DF可得四邊形AEFD是平行四邊形,由此可得當(dāng)AD=AE,即60-4t=2t時(shí),四邊形AEFD是菱形,解此關(guān)于t的方程即可求得對(duì)應(yīng)的t的值;

(3)如圖1和圖2,根據(jù)題意分∠EDF=90°和∠DEF=90°兩種情況結(jié)合已知條件分析計(jì)算即可得到對(duì)應(yīng)的t的值.

試題解析

1直角△ABC中,∠C=90°﹣∠A=30°

∵CD=4tAE=2t,

在直角△CDF中,∠C=30°,

DF=CD=2t

故答案為:2t,2t;

2∵DF⊥BC

∴∠CFD=90°

∵∠B=90°

∴∠B=∠CFD

∴DF∥AB

由(1)得:DF=AE=2t,

四邊形AEFD是平行四邊形,

當(dāng)AD=AE時(shí),四邊形AEFD是菱形,

60﹣4t=2t,

解得:t=10

即當(dāng)t=10時(shí),AEFD是菱形;

3)分兩種情況:

當(dāng)∠EDF=90°時(shí),如圖1DE∥BC

∴∠ADE=∠C=30°

∴AD=2AE

∵CD=4t

∴DF=2t=AE,

∴AD=4t,

∴4t=60﹣4t,

t=

當(dāng)∠DEF=90°時(shí),如圖2,DE⊥EF

四邊形AEFD是平行四邊形,

∴AD∥EF,

∴DE⊥AD,

∴△ADE是直角三角形,∠ADE=90°,

∵∠A=60°,

∴∠DEA=30°,

AD=AE

∴60﹣4t=t,

解得t=12

綜上所述,當(dāng)t=s12s時(shí),DEF是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括O、B),做MNDM,垂足為M,交∠CBE的平分線于點(diǎn)N.

(1)求點(diǎn)C的坐標(biāo);

(2)求證:MD=MN;

(3)如圖(2),連接DNBCF,連接FM,探究線段MF、CF、OM之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.

圖(1) 圖(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只甲蟲(chóng)在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),它從A處出發(fā)看望B、CD處的其它甲蟲(chóng).規(guī)定:向上向右走為正,向下向左走為負(fù),如果從AB記為:AB(+1,+4),從BA記為:BA(-1,-4).其中第一數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中

(1)AC( , ),BD( , );

(2)若這只甲蟲(chóng)的行走路線為ABCD,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB2,AC BAC105°,ABD,ACEBCF都是等邊三角形,則四邊形AEFD的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)中y=ax2+bx﹣3的x、y滿足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求該二次函數(shù)的解析式;
(2)求m的值并直接寫(xiě)出對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共件,其進(jìn)價(jià)和售價(jià)如右表,設(shè)其中甲種商品購(gòu)進(jìn)件.

(1)直接寫(xiě)出購(gòu)進(jìn)乙種商品的件數(shù);(用含的代數(shù)式表示)

(2)若設(shè)該商場(chǎng)售完這件商品的總利潤(rùn)為元.

①求的函數(shù)關(guān)系式;

②該商品計(jì)劃最多投入元用于購(gòu)買(mǎi)這兩種商品,則至少要購(gòu)進(jìn)多少件甲商品?若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料

勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.

先做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.

由圖1可以得到,

整理,得

所以

如果把圖1中的四個(gè)全等的直角三角形擺成圖2所示的正方形,

請(qǐng)你參照上述證明勾股定理的方法,完成下面的填空:

由圖2可以得到 ,

整理,得 ,

所以 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是一個(gè)八角星形紙板,圖中有八個(gè)直角、八個(gè)相等的鈍角,每條邊都相等,如圖2將紙板沿虛線進(jìn)行切割,無(wú)縫隙無(wú)重疊的拼成如圖3所示的大正方形,其面積為8+4 ,則圖3中線段AB的長(zhǎng)為(
A.
B.2
C. ﹣1
D. +1

查看答案和解析>>

同步練習(xí)冊(cè)答案