分析 (1)運(yùn)用三角形的內(nèi)角和定理及角平分線的定義,首先求出∠1+∠2,進(jìn)而求出∠BPC即可解決問(wèn)題;
(2)根據(jù)三角形的外角性質(zhì)分別表示出∠MBC與∠BCN,再根據(jù)角平分線的性質(zhì)可求得∠CBQ+∠BCQ,最后根據(jù)三角形內(nèi)角和定理即可求解;
(3)在△BQE中,由于∠Q=90°-$\frac{1}{2}$∠A,求出∠E=$\frac{1}{2}$∠A,∠EBQ=90°,所以如果△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,那么分四種情況進(jìn)行討論:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E;④∠E=2∠Q;分別列出方程,求解即可.
解答 解:(1)如圖①,
∵在△ABC中,∠A+∠ABC+∠ACB=180°,且∠A=80°,
∴∠ABC+∠ACB=100°,
∵∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACB,
∴∠1+∠2=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$×100°=50°,
∴∠BPC=180°-(∠1+∠2)=180°-50°=130°.
(2)如圖②,
∵∠MBC=∠A+∠ACB,∠BCN=∠ABC+∠A,
∴∠MBC+∠BCN=∠A+∠ABC+∠ACB+∠A=180°+∠A.
∵BE,CQ分別為△ABC的外角∠MBC,∠NCB的角平分線,
∴∠CBQ+∠BCQ=$\frac{1}{2}$(180°+∠A),
∴∠Q=180°-(∠CBQ+∠BCQ)=90°-$\frac{1}{2}$∠A;
(3)如圖③,連結(jié)BC并延長(zhǎng)到點(diǎn)F.
∵CQ為△ABC的外角∠NCB的角平分線,
∴CE是△ABC的外角∠ACF的平分線,
∴∠ACF=2∠ECF,
∵BE平分∠ABC,
∴∠ABC=2∠EBC,
∵∠ECF=∠EBC+∠E,
∴2∠ECF=2∠EBC+2∠E,
即∠ACF=∠ABC+2∠E,
又∵∠ACF=∠ABC+∠A,
∴∠A=2∠E,即∠E=$\frac{1}{2}$∠A;
∵∠EBQ=∠EBC+∠CBQ
=$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠MBC
=$\frac{1}{2}$(∠ABC+∠A+∠ACB)=90°.
如果△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,那么分四種情況:
①∠EBQ=2∠E=90°,則∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,則∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,則90°-$\frac{1}{2}$∠A=∠A,解得∠A=60°;
④∠E=2∠Q,則$\frac{1}{2}$∠A=2(90°-$\frac{1}{2}$∠A),解得∠A=120°.
綜上所述,∠A的度數(shù)是90°或60°或120°.
點(diǎn)評(píng) 本題是三角形綜合題,考查了三角形內(nèi)角和定理、外角的性質(zhì),角平分線定義等知識(shí);靈活運(yùn)用三角形的內(nèi)角和定理、外角的性質(zhì)進(jìn)行分類討論是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2017屆山東省日照市莒縣第三協(xié)作區(qū)九年級(jí)3月學(xué)業(yè)水平模擬考試數(shù)學(xué)試卷(解析版) 題型:單選題
正三角形內(nèi)切圓與外接圓半徑之比為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 0 | C. | $\frac{1}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com