【題目】如圖①,四邊形中,,,點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,按的順序在邊上勻速運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,關(guān)于的函數(shù)圖像如圖②所示,當(dāng)運(yùn)動(dòng)到中點(diǎn)時(shí),的面積為__________

【答案】20

【解析】

由函數(shù)圖象上的點(diǎn)(632)、(100)的實(shí)際意義可知AB+BC、AB+BC+CD的長(zhǎng)及△PAD的最大面積,從而求得ADCD的長(zhǎng),再根據(jù)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí)得,從而求得AB的長(zhǎng),最后根據(jù)梯形的中位線定理可求得當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),△PAD的面積.

解:由圖象可知,AB+BC=12,AB+BC+CD=20

CD=8,

根據(jù)題意可知,當(dāng)P點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),△PAD的面積最大,

, AD=8,

又∵,

AB=2

當(dāng)P點(diǎn)運(yùn)動(dòng)到BC中點(diǎn)時(shí),BP=PC,

如圖,作PQAD于點(diǎn)Q,

ABPQCD

PQ為梯形ABCD的中位線,

PQ=

∴△PAD的面積=

故答案為:20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),在軸上任取一點(diǎn),連接,作的垂直平分線,過點(diǎn)軸的垂線,交于點(diǎn).設(shè)點(diǎn)的坐標(biāo)為

(Ⅰ)當(dāng)的坐標(biāo)取時(shí),點(diǎn)的坐標(biāo)為________;

(Ⅱ)求滿足的關(guān)系式;

(Ⅲ)是否存在點(diǎn),使得恰為等邊三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,分別以頂點(diǎn)A、B為圓心,大于AB為半徑作弧,兩弧在直線AB兩側(cè)分別交于MN兩點(diǎn),過MN作直線MN,與AB交于點(diǎn)O,以O為圓心,OA為半徑作圓,⊙O恰好經(jīng)過點(diǎn)C.下列結(jié)論中,錯(cuò)誤的是(

A.AB是⊙O的直徑B.ACB90°

C.ABC是⊙O內(nèi)接三角形D.OABC的內(nèi)心

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,點(diǎn)在邊上,以為半徑的于點(diǎn),過點(diǎn)于點(diǎn)

1)如圖1,求證:的切線;

2)如圖2,連接于點(diǎn),若中點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)某種運(yùn)動(dòng)服的銷量與售價(jià)是一次函數(shù)關(guān)系,具體信息如下表:

售價(jià)(元/件)

200

210

220

230

月銷量(件)

200

180

160

140

已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件150元.

1)售價(jià)為元,月銷量為件;

①求關(guān)于的函數(shù)關(guān)系式;

②若銷售該運(yùn)動(dòng)服的月利潤(rùn)為元,求關(guān)于的函數(shù)關(guān)系式,并求月利潤(rùn)最大時(shí)的售價(jià);

2)由于運(yùn)動(dòng)服進(jìn)價(jià)降低了元,商家決定回饋顧客,打折銷售,這時(shí)月銷量與調(diào)整后的售價(jià)仍滿足(1)中函數(shù)關(guān)系式.結(jié)果發(fā)現(xiàn),此時(shí)月利潤(rùn)最大時(shí)的售價(jià)比調(diào)整前月利潤(rùn)最大時(shí)的售價(jià)低15元,則的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知內(nèi)接于⊙,直徑于點(diǎn),連接,過點(diǎn),垂足為.過點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn)

(1),求的度數(shù);

(2),求證:

(3)(2)的條件下,連接,設(shè)的面積為,的面積為,若,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長(zhǎng)線上一點(diǎn),連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCA,OA2,求CP的長(zhǎng);

(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,MNMC9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;

(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,FAB上一點(diǎn),EBC延長(zhǎng)線上一點(diǎn),且AFEC,連結(jié)EF,DEDF,MFE中點(diǎn),連結(jié)MC,設(shè)FEDC相交于點(diǎn)N.則4個(gè)結(jié)論:①DEDF;②∠CME=CDE;③DG2=GN GE;④若BF2,則正確的結(jié)論有( )個(gè).

A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案