【題目】如圖,AB是⊙O的直徑,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積為_____

【答案】

【解析】

作直徑CG,連接OC、OD、OE、OF、DG、OF,則根據(jù)圓周角定理求得DG的長(zhǎng),證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△BCD,S△OEF=S△BEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.

解:作直徑CG,連接OC、OD、OE、OF、DG、OF.

∵CG是圓的直徑,

∴∠CDG=90°,則DG===8,

∵EF=8,

∴DG=EF,

=

∴S扇形ODG=S扇形OEF,

∵AB∥CD∥EF,

∴S△OCD=S△BCD,S△OEF=S△BEF,

∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=π.

故答案是:π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)、分別是邊的中點(diǎn),點(diǎn)邊上,連接、、,則添加下列哪一個(gè)條件后,仍無(wú)法判定全等的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖O是△ABC的外接圓,∠ABC=45°,延長(zhǎng)BCD,連接AD,使得ADOC,ABOCE

(1)求證:ADO相切;

(2)若AE=2,CE=2.求O的半徑和AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2,B﹣3,﹣2

1若點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為

2將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為

3A,B,C,D組成的四邊形ABCD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形BEFG的邊長(zhǎng)分別為13,點(diǎn)C在邊BG上,線段DF、EG交于點(diǎn)M,連接DE、BM,則△DEG的面積為____,BM=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你吃過(guò)拉面嗎?實(shí)際上在做拉面的過(guò)程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度y(m)是面條的粗細(xì)(橫截面積)S(mm2)的反比例函數(shù),其圖象如圖所示.

(1)寫出y(m)與S(mm2)的函數(shù)關(guān)系式;

(2)求當(dāng)面條粗2mm2時(shí),面條的總長(zhǎng)度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由甲、乙兩個(gè)工程隊(duì)承包某校校園綠化工程,甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間比是3︰2,兩隊(duì)合做6天可以完成.

。1)求兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

(2)此項(xiàng)工程由甲、乙兩隊(duì)合做6天完成任務(wù)后,學(xué)校付給他們20000元報(bào)酬,若

按各自完成的工程量分配這筆錢,問(wèn)甲、乙兩隊(duì)各得到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況,他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)的x值,小亮負(fù)責(zé)找值為0時(shí)的x值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )

A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1;

B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0;

C.小花發(fā)現(xiàn)當(dāng)取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值;

D.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,ABAC,過(guò)其中一個(gè)頂點(diǎn)的直線可以把這個(gè)三角形分成另外兩個(gè)等腰三角形,則∠BAC

A. 36°,90°,, 108°B. 36°,72°,,90°

C. 90°,72°108°,D. 36°,90°108°,

查看答案和解析>>

同步練習(xí)冊(cè)答案