【題目】如圖,在等腰中,為直線上一動點(不與、重合).以為邊向右側(cè)作正方形,連結(jié)

(猜想)如圖①,當(dāng)點在線段上時,直接寫出、、三條線段的數(shù)量關(guān)系.

(探究)如圖②,當(dāng)點在線段的延長線上時,判斷、三條線段的數(shù)量關(guān)系,并說明理由.

(應(yīng)用)如圖③,當(dāng)點在線段的反向延長線上時,點、分別在直線兩側(cè),交點為點連結(jié),若,則    

【答案】[猜想];[探究],理由見解析;[應(yīng)用]

【解析】

[猜想]根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF90°,推出,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
[探究]根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF90°,推出,根據(jù)全等三角形的性質(zhì)可得到結(jié)論.

[應(yīng)用]根據(jù)題意計算出BC的值,通過得到,由勾股定理得出DF的值,再由直角三角形斜邊上的中線的性質(zhì)得到CO的值即可.

[猜想].證明如下:

是等腰直角三角形.

四邊形為正方形

,

,

[探究]

是等腰直角三角形.

四邊形為正方形

,

[應(yīng)用]

同理可得

,,

中,

在正方形中,中點

∴在中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結(jié)論:①abc0;②2a+b0;③若m為任意實數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結(jié)論的個數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點,過的切線,交的延長線于點,過,交延長線于點,連接,交于點,交于點,連接

1)求證:;

2)連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,將含30°角的放在第一象限,其中30°角的對邊長為1,斜邊的端點,分別在軸的正半軸,軸的正半軸上滑動,連接,則線段的長的最大值是(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點,,線段軸平行,且,拋物線

1)當(dāng)時,求該拋物線與軸的交點坐標(biāo);

2)當(dāng)時,求的最大值(用含的代數(shù)式表示);

3)當(dāng)拋物線經(jīng)過點時,的解析式為__________,頂點坐標(biāo)為__________,點__________(填“是”或“否”)在上.

若線段以每秒2個單位長的速度向下平移,設(shè)平移的時間為(秒).

①若與線段總有公共點,求的取值范圍;

②若同時以每秒3個單位長的速度向下平移,軸及其右側(cè)的圖象與直線總有兩個公共點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陽光體育活動時間,小英、小麗、小敏、小潔四位同學(xué)進行一次羽毛球單打比賽,要從中選出兩位同學(xué)打第一場比賽.

1)若已確定小英打第一場,再從其余三位同學(xué)中隨機選取一位,求恰好選中小麗同學(xué)的概率;

2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學(xué)進行比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次促銷活動中,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券元.

(1)求每轉(zhuǎn)動一次轉(zhuǎn)盤所獲購物券金額的平均數(shù);

(2)如果你在該商場消費元,你會選擇轉(zhuǎn)轉(zhuǎn)盤還是直接獲得購物券?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點(在點的左側(cè)),經(jīng)過點的直線軸交于點,與拋物線的另一個交點為

1)則點的坐標(biāo)為__________,點的坐標(biāo)為__________,拋物線的對稱軸為__________;

2)點是直線下方拋物線上的一點,當(dāng)時.求面積的最大值;

3)設(shè)為拋物線對稱軸上一點,點在拋物線上,若以點、、為頂點的四邊形為矩形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形 ABCD 中,M,N,P,Q 分別為邊 AB,BC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結(jié)論中:①存在無數(shù)個四邊形 MNPQ 是平行四邊形;②存在無數(shù)個四邊形 MNPQ 是矩形;③存在無數(shù)個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結(jié)論的序號是_________________

查看答案和解析>>

同步練習(xí)冊答案