分析 (1)連接OD,由題可知,E已經(jīng)是圓上一點,欲證CD為切線,只需證明∠ODF=90°即可;
(2)連接BD,作DG⊥AB于G,根據(jù)勾股定理求出BD,進而根據(jù)勾股定理求得DG,根據(jù)角平分線性質(zhì)求得DE=DG=$\frac{4}{3}$$\sqrt{2}$,然后根據(jù)△ODF∽△AEF,得出比例式,即可求得EF的長.
解答 (1)證明:連接OD,
∵AD平分∠CAB,
∴∠OAD=∠EAD.
∵OD=OA,
∴∠ODA=∠OAD.
∴∠ODA=∠EAD.
∴OD∥AE.
∵∠ODF=∠AEF=90°且D在⊙O上,
∴EF與⊙O相切.
(2)連接BD,作DG⊥AB于G,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AB=6,AD=4$\sqrt{2}$,
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=2,
∵OD=OB=3,
設(shè)OG=x,則BG=3-x,
∵OD2-OG2=BD2-BG2,即32-x2=22-(3-x)2,
解得x=$\frac{7}{3}$,
∴OG=$\frac{7}{3}$,
∴DG=$\sqrt{O{D}^{2}-O{G}^{2}}$=$\frac{4}{3}$$\sqrt{2}$,
∵AD平分∠CAB,AE⊥DE,DG⊥AB,
∴DE=DG=$\frac{4}{3}$$\sqrt{2}$,
∴AE=$\sqrt{A{D}^{2}-D{E}^{2}}$=$\frac{16}{3}$,
∵OD∥AE,
∴△ODF∽△AEF,
∴$\frac{DF}{EF}$=$\frac{OD}{AE}$,即$\frac{EF-ED}{EF}$=$\frac{OD}{AE}$,
∴$\frac{EF-\frac{4}{3}\sqrt{2}}{EF}$=$\frac{3}{\frac{16}{3}}$,
∴EF=$\frac{64}{21}$$\sqrt{2}$.
點評 本題考查了相似三角形的性質(zhì)和判定,勾股定理,切線的判定等知識點的應(yīng)用,主要考查學(xué)生運用性質(zhì)進行推理和計算的能力,兩小題題型都很好,都具有一定的代表性.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5和6 | B. | 6和7 | C. | 7和8 | D. | 8和9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com