【題目】如圖,拋物線(xiàn)y=ax2+bx+2與直線(xiàn)l交于點(diǎn)A、B兩點(diǎn),且A點(diǎn)為拋物線(xiàn)與y軸的交點(diǎn),B(﹣2,﹣4),拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=2,過(guò)點(diǎn)A作AC⊥AB,交拋物線(xiàn)于點(diǎn)C、x軸于點(diǎn)D.
(1)求此拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)拋物線(xiàn)上是否存在點(diǎn)K,使得以AC為邊的平行四邊形ACKL的面積等于△ABC的面積?若存在,請(qǐng)直接寫(xiě)出點(diǎn)K的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.[提示:拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=﹣ ,頂點(diǎn)坐標(biāo)為(﹣ , )].
【答案】
(1)
解:∵對(duì)稱(chēng)軸為x=2,拋物線(xiàn)經(jīng)過(guò)點(diǎn)B,
∴ ,
∴解得:a=﹣ ,b=2,
∴拋物線(xiàn)的解析式是:y=﹣ x2+2x+2
(2)
解:∵點(diǎn)A在y軸上,令x=0,則y=2,
∴點(diǎn)A坐標(biāo)(0,2),
作BE⊥y軸于E,
∵AC⊥AB,AO⊥OD,
∴∠AOD=∠DAO,
又∵∠AOD=∠ABE,
∴∠ABE=∠DAO,
∵∠AEB=∠AOD=90°,
∴△ABE∽△DAO,
∴
∵B(﹣2,﹣4),
∴OA=2,AE=6,BE=2,
∴OD=6,
∴點(diǎn)D坐標(biāo)是(6,0)
(3)
解:答:存在兩個(gè)滿(mǎn)足條件的點(diǎn)K,
∵AB=2 ,
∴S△ABC= ABAC=S平行四邊形ACKL,
∴點(diǎn)K到直線(xiàn)AC距離為 AB= ;
①直線(xiàn)KL解析式為y=﹣ x+ ,
則﹣ x+ =﹣ x2+2x+2,
方程無(wú)解;
②直線(xiàn)KL解析式為y=﹣ x﹣ ,
則﹣ x﹣ =﹣ x2+2x+2,
解得:x= 或x= ,
∴存在K點(diǎn),橫坐標(biāo)為 或
【解析】(1)根據(jù)對(duì)稱(chēng)軸為直線(xiàn)x=2和B是拋物線(xiàn)上點(diǎn)即可求得a、b的值,即可解題;(2)易求得點(diǎn)A坐標(biāo),作BE⊥x軸于E,易證△ABE∽△DAO,可得 ,即可求得OD的值,即可解題;(3)易求得AB長(zhǎng)度,再根據(jù)S△ABC= ABAC=S平行四邊形ACKL , 可得點(diǎn)K到直線(xiàn)AC距離為 AB,易求得直線(xiàn)AC解析式,將直線(xiàn)AC向上或向下平移 單位,求得直線(xiàn)與拋物線(xiàn)交點(diǎn)即可解題.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2﹣2x+3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)請(qǐng)直接寫(xiě)出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線(xiàn)AC上的動(dòng)點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,東湖隧道的截面由拋物線(xiàn)和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)OA為12cm,寬OB為4cm,隧道頂端D到路面的距離為10cm,建立如圖所示的直角坐標(biāo)系
(1)求該拋物線(xiàn)的解析式.
(2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱,集裝箱最高處與地面距離為6m,寬為4m,隧道內(nèi)設(shè)雙向行車(chē)道,問(wèn)這輛貨車(chē)能否安全通過(guò)?
(3)在拋物線(xiàn)型拱壁上需要安裝兩排燈,使它們離地面高度相等,如果燈離地面的高度不超過(guò)8.5m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】織里某品牌童裝在甲、乙兩家門(mén)店同時(shí)銷(xiāo)售A,B兩款童裝,4月份甲門(mén)店銷(xiāo)售A款童裝60件,B款童裝15件,兩款童裝的銷(xiāo)售總額為3600元,乙門(mén)店銷(xiāo)售A款童裝40件,B款童裝60件,兩款童裝的銷(xiāo)售總額為4400元.
(1)A款童裝和B款童裝每件售價(jià)各是多少元?
(2)現(xiàn)計(jì)劃5月將A款童裝的銷(xiāo)售額增加20%,問(wèn)B款童裝的銷(xiāo)售額需增加百分之幾,才能使A,B兩款童裝的銷(xiāo)售額之比為4:3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家到梧州市一茶廠(chǎng)購(gòu)買(mǎi)茶葉,購(gòu)買(mǎi)茶葉數(shù)量為x千克(x>0),總費(fèi)用為y元,現(xiàn)有兩種購(gòu)買(mǎi)方式. 方式一:若商家贊助廠(chǎng)家建設(shè)費(fèi)11500元,則所購(gòu)茶葉價(jià)格為130元/千克;(總費(fèi)用=贊助廠(chǎng)家建設(shè)費(fèi)+購(gòu)買(mǎi)茶葉費(fèi))
方式二:總費(fèi)用y(元)與購(gòu)買(mǎi)茶葉數(shù)量x(千克)滿(mǎn)足下列關(guān)系式:y= .
請(qǐng)回答下面問(wèn)題:
(1)寫(xiě)出購(gòu)買(mǎi)方式一的y與x的函數(shù)關(guān)系式;
(2)如果購(gòu)買(mǎi)茶葉超過(guò)150千克,說(shuō)明選擇哪種方式購(gòu)買(mǎi)更省錢(qián);
(3)甲商家采用方式一購(gòu)買(mǎi),乙商家采用方式二購(gòu)買(mǎi),兩商家共購(gòu)買(mǎi)茶葉400千克,總費(fèi)用共計(jì)74600元,求乙商家購(gòu)買(mǎi)茶葉多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓外墻有高為AB的廣告牌,由距離大樓20米的點(diǎn)C(即CD=20米)觀(guān)察它的頂部A的仰角是55°,底部B的仰角是42°,求AB的高度.(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+2與直線(xiàn)l交于點(diǎn)A、B兩點(diǎn),且A點(diǎn)為拋物線(xiàn)與y軸的交點(diǎn),B(﹣2,﹣4),拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=2,過(guò)點(diǎn)A作AC⊥AB,交拋物線(xiàn)于點(diǎn)C、x軸于點(diǎn)D.
(1)求此拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)拋物線(xiàn)上是否存在點(diǎn)K,使得以AC為邊的平行四邊形ACKL的面積等于△ABC的面積?若存在,請(qǐng)直接寫(xiě)出點(diǎn)K的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.[提示:拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=﹣ ,頂點(diǎn)坐標(biāo)為(﹣ , )].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過(guò)點(diǎn)C作AC∥BD交OB的延長(zhǎng)線(xiàn)于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線(xiàn);
(2)求弦BD的長(zhǎng);
(3)求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com