如圖,PA是⊙O的切線,切點(diǎn)是A,過點(diǎn)A作AH⊥OP于點(diǎn)H,交⊙O于點(diǎn)B.
求證:PB是⊙O的切線.

【答案】分析:連接OA,OB,只要證明∠OBP=90°即可.
解答:證明:連接OA,OB;
∵PA是⊙O的切線,
∴∠OAP=90°.
∵OA=OB,AB⊥OP,
∴∠AOP=∠BOP.
又∵OA=OB,OP=OP,
∴△AOP≌△BOP(SAS).
∴∠OBP=∠OAP=90°.
∴PB是⊙O的切線.
點(diǎn)評:掌握切線的判定方法,能夠找到證明全等三角形的條件,根據(jù)全等三角形的性質(zhì)證明角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省臨沂市莒南縣九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省臨沂市莒南縣九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB=2BC

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;    
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(58)(解析版) 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點(diǎn),PD切⊙O于點(diǎn)D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.
(1)求證:PC是⊙O的切線;        
(2)若AC=PD,連結(jié)BC.求證:AB=2BC.

查看答案和解析>>

同步練習(xí)冊答案