(如圖,已知∠AOB=ll0°,∠AOC=m∠AOD,∠COE=n∠BOC,且3(m-2)+4=m+2,單項(xiàng)式的系數(shù)為n.
(1)求4(m-n) 2-(m-n) 2-5的值;
(2)當(dāng)∠COD:∠COE=3:2時(shí),試求∠COD的度數(shù).

(1);(2)33°

解析試題分析:(1)先解方程3(m-2)+4=m+2得到m的值,再根據(jù)單項(xiàng)式的系數(shù)的定義得到n的值,然后化簡(jiǎn)代數(shù)式,最后代入求值;
(2)由(1)可知∠AOC =2∠AOD,∠COE=∠BOC,則可得∠AOD=∠AOC,∠COD=∠AOC-∠AOD=∠AOC,從而求得∠COD+∠COE=55°,設(shè)∠COD=3x°,則∠COE=2x°,即可列方程求解.
(1)解方程3(m-2)+4=m+2得m="2"
由已知有n=
∴4(m-n)2-(m-n)2-5=3(m-n)2-5
當(dāng)m=2,n=時(shí),m-n=,原式=3×(2-5=-5=;
(2)由(1)可知:∠AOC =2∠AOD,∠COE=∠BOC
∴∠AOD=∠AOC,∠COD=∠AOC-∠AOD=∠AOC
∴∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=55°
設(shè)∠COD=3x°,則∠COE=2x°
∴3x+2x=55    
∴x=11
∴∠COD=33°.
考點(diǎn):代數(shù)式求值,一元一次方程的應(yīng)用
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性強(qiáng),難度較大,需要學(xué)生熟練掌握各方面的基礎(chǔ)知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對(duì)稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對(duì)稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對(duì)稱的△A3B3C3
②△ABC與△A3B3C3成軸對(duì)稱嗎?如果成,請(qǐng)畫(huà)出對(duì)稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網(wǎng)
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數(shù);
(2)若∠AOC=x°,∠EOF=y°.則請(qǐng)用x的代數(shù)式來(lái)表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫(xiě)作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點(diǎn)N為OB上一個(gè)定點(diǎn).通過(guò)畫(huà)圖可以知道:當(dāng)∠AOB=45°時(shí),在射線OC上存在點(diǎn)P,使△ONP成為等腰三角形,且符合條件的點(diǎn)有三個(gè),即P1(頂點(diǎn)為P2),P2(頂點(diǎn)為0),P3(頂點(diǎn)為N).
試問(wèn):當(dāng)∠AOB分別為銳角、直角、鈍角時(shí),在射線OC上使△ONP成為等腰三角形的點(diǎn)P是否仍然存在三個(gè)?請(qǐng)分別畫(huà)出簡(jiǎn)圖并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案