分析 (2)①首先延長FD到G,使得DG=DF,進而得出CF=BG,DF=DG,以及EF=EG,再利用三角形三邊關(guān)系得出答案;
②由①知∠FCD=∠DBG,EF=EG,再利用勾股定理得出答案;
(3)利用全等三角形的判定與性質(zhì)得出△DEG≌△DEF(SAS),進而得出EF=EG=BE+BG,即EF=BE+CF,進而得出答案.
解答 (2)證明:①如答題圖1,延長FD到G,使得DG=DF,連接BG、EG.
則CF=BG,DF=DG,
∵DE⊥DF,∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.
解:②若∠A=90°,則∠EBC+∠FCB=90°,
由①知∠FCD=∠DBG,EF=EG,
∴∠EBC+∠DBG=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2,
∴BE2+CF2=EF2;
(3)解:如答題圖2,將△DCF繞點D逆時針旋轉(zhuǎn)120°得到△DBG.
∵∠C+∠ABD=180°,∠4=∠C,
∴∠4+∠ABD=180°,
∴點E、B、G在同一直線上.
∵∠3=∠1,∠BDC=120°,∠EDF=60°,
∴∠1+∠2=60°,故∠2+∠3=60°,即∠EDG=60°
∴∠EDF=∠EDG=60°,
在△DEG和△DEF中,
$\left\{\begin{array}{l}{DE=DE}\\{∠EDG=∠EDF}\\{DG=DF}\end{array}\right.$
∴△DEG≌△DEF(SAS),
∴EF=EG=BE+BG,即EF=BE+CF.
點評 此題主要考查了幾何變換綜合以及全等三角形的判定與性質(zhì)、勾股定理等知識,正確得出△DEG≌△DEF(SAS)是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 正比例函數(shù) | B. | 反比例函數(shù) | ||
C. | 圖象不經(jīng)過原點的一次函數(shù) | D. | 二次函數(shù) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com