【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)

【答案】(1)山坡高度為400米;

(2)山CF的高度約為541米.

【解析】解:(1)作BH⊥AF于H,如圖,

在Rt△ABF中,∵sin∠BAH=,∴BH=800sin30°=400,∴EF=BH=400m;

(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200sin45°=100≈141.4,

∴CF=CE+EF=141.4+400≈541(m).

答:AB段山坡高度為400米,山CF的高度約為541米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=10,∠C=30°,點D從點C出發(fā)沿CA方向以每秒2個單位長度的速度向點A勻速運(yùn)動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長度的速度向點B勻速運(yùn)動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運(yùn)動.設(shè)點DE運(yùn)動的時間是tt0)秒,過點DDFBC于點F,連接DE、EF

1)求證:四邊形AEFD是平行四邊形;

2)當(dāng)t為何值時,DEF是等邊三角形?說明理由;

3)當(dāng)t為何值時,DEF為直角三角形?(請直接寫出t的值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要建一個面積為150 m2的矩形養(yǎng)雞場,為了節(jié)約材料養(yǎng)雞場的一邊沿用原來的一堵墻,墻長為a m,其余三邊用竹籬笆圍成,已知竹籬笆的長為35 m.

(1)如果a=40,那么養(yǎng)雞場的長和寬各為多少米?

(2)如果a是一個可以變化的量那么墻的長度a對所建的養(yǎng)雞場有怎樣的影響?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)由大小相同的小立方塊搭成的幾何體如圖1,請在圖2的方格中畫出該幾何體的俯視圖和左視圖.

2)用小立方體搭一個幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要    個小立方塊,最多要    個小立方塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、OB依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒4°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉(zhuǎn),直線MN保持不動,如圖2,設(shè)旋轉(zhuǎn)時間為t(0t60,單位:秒)

1)當(dāng)t=3時,求∠AOB的度數(shù);

2)在運(yùn)動過程中,當(dāng)∠AOB第二次達(dá)到72°時,求t的值;

3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測得燈塔C位于輪船的北偏西30°方向,上午1040B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時到達(dá)海岸線?

(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD外切于O,切點分別為E、F、G、H.則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點A的坐標(biāo)為(m,0),點B的坐標(biāo)為(0,n),其中m,0,將三角形BOA沿x軸的正方向向右平移10個單位長度得到三角形CDE,連接BC

1)如圖1,分別求點C、點E的坐標(biāo);

2)點P自點C出發(fā),以每秒1個單位長度沿線段CB運(yùn)動,同時點Q自點O出發(fā),以每秒2個單位長度沿線段OE運(yùn)動,連接AP、BQ,點Q運(yùn)動至點E時,點P同時停止運(yùn)動.設(shè)運(yùn)動時間t(秒),三角形ABQ的面積與三角形APB的面積的和為s(平方單位),求st的關(guān)系式,并直接寫出t的取值范圍;

3)在(2)的條件下,BPQE83,此時將線段PQ向左平移2個單位長度得到線段P'Q'(點P'與點P對應(yīng)),線段PQ'再向下平移2個單位長度得到線段MN(點M與點P'對應(yīng)),線段MNx軸于點G,點H在線段OA上,OHOG,過點HHROA,交AB于點R,求點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于只有1張市運(yùn)動會開幕式的門票,小王和小張都想去,兩人商量采取轉(zhuǎn)轉(zhuǎn)盤(如圖,轉(zhuǎn)盤盤面被分為面積相等,且標(biāo)有數(shù)字1,2,3,4的4個扇形區(qū)域)的游戲方式?jīng)Q定誰勝誰去觀看.規(guī)則如下:兩人各轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤指針停止,如兩次指針對應(yīng)盤面數(shù)字都是奇數(shù),則小王勝;如兩次指針對應(yīng)盤面數(shù)字都是偶數(shù),則小張勝;如兩次指針對應(yīng)盤面數(shù)字是一奇一偶,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù).

如果小王和小張按上述規(guī)則各轉(zhuǎn)動轉(zhuǎn)盤一次,則

(1)小王轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?

(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

同步練習(xí)冊答案