【題目】一位同學(xué)拿了兩塊45°的三角尺△MNK、△ACB做了一個(gè)探究活動(dòng):將△MNK的直角頂點(diǎn)M放在△ABC的斜邊AB的中點(diǎn)處,設(shè)AC=BC=a.
(1)如圖1,兩個(gè)三角尺的重疊部分為△ACM,則重疊部分的面積為 ,周長為 .
(2)將圖1中的△MNK繞頂點(diǎn)M逆時(shí)針旋轉(zhuǎn)45°,得到圖2,此時(shí)重疊部分的面積為 ,周長為 .
2(3)如果將△MNK繞M旋轉(zhuǎn)到不同于圖1,圖2的位置,如圖3所示,猜想此時(shí)重疊部分的面積為多少?并試著加以驗(yàn)證.
【答案】(1)重疊部分的面積是△ACB的面積的一半為a2,周長為(1+)a.(2)邊長為a,面積為a2,周長為2a.(3).
【解析】解:(1)∵AM=MC=AC=a,則
∴重疊部分的面積是△ACB的面積的一半為a2,周長為(1+)a.
(2)∵重疊部分是正方形
∴邊長為a,面積為a2,周長為2a.
(3)猜想:重疊部分的面積為.
理由如下:
過點(diǎn)M分別作AC、BC的垂線MH、MG,垂足為H、G
設(shè)MN與AC的交點(diǎn)為E,MK與BC的交點(diǎn)為F
∵M(jìn)是△ABC斜邊AB的中點(diǎn),AC=BC=a
∴MH=MG=
又∵∠HME+∠HMF=∠GMF+∠HMF,
∴∠HME=∠GMF,
∴Rt△MHE≌Rt△MGF
∴陰影部分的面積等于正方形CGMH的面積
∵正方形CGMH的面積是MGMH=×=
∴陰影部分的面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x,4)與點(diǎn)B(3,y)關(guān)于y軸對(duì)稱,那么x+y的值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.一組對(duì)邊相等,另一組對(duì)邊平行的四邊形一定是平行四邊形
B.對(duì)角線相等的四邊形一定是矩形
C.兩條對(duì)角線互相垂直的四邊形一定是菱形
D.兩條對(duì)角線相等且互相垂直平分的四邊形一定是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王經(jīng)理到襄陽出差帶回襄陽特產(chǎn)﹣﹣孔明菜若干袋,分給朋友們品嘗,如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經(jīng)理帶回孔明菜 袋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列是某同學(xué)在一次作業(yè)中的計(jì)算摘錄:①4x3-(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè)
C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一農(nóng)戶要建一個(gè)矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,所圍矩形豬舍的長、寬分別為多少時(shí),豬舍面積為80m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,求∠AEB的度數(shù).
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請(qǐng)求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com