【題目】下列命題正確的是( )
A.一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形
B.對角線相等的四邊形一定是矩形
C.兩條對角線互相垂直的四邊形一定是菱形
D.兩條對角線相等且互相垂直平分的四邊形一定是正方形
【答案】D
【解析】
試題分析:A、一組對邊相等,另一組對邊平行的四邊形不一定為平行四邊形,例如等腰梯形滿足一組對邊相等,另一組對邊平行,但不是平行四邊形;
B、對角線相等的四邊形不一定為矩形,例題等腰梯形的對角線相等,但不是矩形,應改為對角線相等的平行四邊形為矩形;
C、對角線互相垂直的四邊形不一定為菱形,例如:畫出圖形,如圖所示,AC與BD垂直,但是顯然ABCD不是菱形,應改為對角線互相垂直的平行四邊形是菱形;
D、兩條對角線相等且互相垂直平分的四邊形是正方形,根據題意畫出相應的圖形,如圖所示,根據對角線互相平分,得到四邊形為平行四邊形,再由平行四邊形的對角線相等,得到平行四邊形為矩形,最后根據矩形的對角線互相垂直得到矩形為正方形.
解:A、一組對邊相等,另一組對邊平行的四邊形不一定是平行四邊形,
例如等腰梯形,一組對邊平行,另一組對邊相等,不是平行四邊形,
故本選項為假命題;
B、對角線相等的四邊形不一定是矩形,
例如等腰梯形對角線相等,但不是矩形,
故本選項為假命題;
C、兩條對角線互相垂直的四邊形不一定是菱形,
如圖所示:AC⊥BD,但四邊形ABCD不是菱形,本選項為假命題;
D、兩條對角線相等且互相垂直平分的四邊形是正方形,
已知:四邊形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,
求證:四邊形ABCD為正方形,
證明:∵OA=OC,OB=OD,
∴四邊形為平行四邊形,又AC=BD,
∴四邊形ABCD為矩形,
∵AC⊥BD,
∴四邊形ABCD為正方形,則本選項為真命題,
故選D
科目:初中數學 來源: 題型:
【題目】制作一種產品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據了解,該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;
(2)根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數式表示切痕的總長為_____________厘米;
(2)若每塊小矩形的面積為48厘米2,四個正方形的面積和為200厘米2,試求(m+n)2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
填空:
如圖,已知∠1+∠2=180°,∠3=∠B,求證:∠AED=∠ACB.
證明:∵∠1+∠2=180°(已知)
∠1+________=180°(鄰補角的定義)
∴∠2=________(同角的補角定義)
∴AB∥EF(___________________)
∴∠3=________(_____________________)
又∵∠3=∠B(已知)
∴∠B=________(等量代換)
∴DE∥BC(_________________)
∴∠AED=∠ACB(__________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一位同學拿了兩塊45°的三角尺△MNK、△ACB做了一個探究活動:將△MNK的直角頂點M放在△ABC的斜邊AB的中點處,設AC=BC=a.
(1)如圖1,兩個三角尺的重疊部分為△ACM,則重疊部分的面積為 ,周長為 .
(2)將圖1中的△MNK繞頂點M逆時針旋轉45°,得到圖2,此時重疊部分的面積為 ,周長為 .
2(3)如果將△MNK繞M旋轉到不同于圖1,圖2的位置,如圖3所示,猜想此時重疊部分的面積為多少?并試著加以驗證.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(a,1)與點A′(5,b)關于坐標原點對稱,則實數a、b的值是( )
A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com