【題目】在一個不透明的布袋里裝有4個標號為1、2、3、4的小球,它們的材質(zhì)、形狀、大小完全相同,小亮從布袋里隨機摸出一個小球,記下數(shù)字為x,小剛從剩下的3個小球中隨機摸出一個小球,記下數(shù)字為y,這樣確定了點P的坐標(x,y).
(1)若小亮摸出的小球上的數(shù)字是2,那么小剛摸出的小球上的數(shù)字是4的概率是多少?
(2)利用畫樹狀圖或列表格的方法,求點P(x,y)在函數(shù)y=﹣x+6的圖象上的概率.
【答案】(1);(2).
【解析】
(1)由概率公式即可得出答案;
(2)畫出樹狀圖得出所有可能結(jié)果,點P(x,y)在函數(shù)y=-x+6的圖象上的結(jié)果有2個,由概率公式即可得出答案.
解:(1)小剛摸出的小球上的數(shù)字是4的概率是;
(2)畫樹狀圖得:
∴共有12種等可能的結(jié)果數(shù),即點P所有可能的坐標為(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);
∵(2,4),(4,2)在函數(shù)y=﹣x+6的圖象上,
∴點P(x,y)在函數(shù)y=﹣x+6的圖象上的概率為=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,以AD為底邊作等腰△ADE,將△ADE沿DE折疊,點A落到點F處,連接EF剛好經(jīng)過點C,再連接AF,分別交DE于點G,交CD于點H,下列結(jié)論:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤,其中正確的有__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x+4與y=kx+4分別交x軸于點A、B,兩直線交于y軸上同一點C,點D的坐標為(﹣,0),點E是AC的中點,連接OE交CD于點F.
(1)求點F的坐標;
(2)若∠OCB=∠ACD,求k的值;
(3)在(2)的條件下,過點F作x軸的垂線1,點M是直線BC上的動點,點N是x軸上的動點,點P是直線l上的動點,使得以B,P,M、N為頂點的四邊形是菱形,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我校今年學生節(jié)期間準備銷售一種成本為每瓶4元的飲料.據(jù)去年學生節(jié)試銷情況分析,按每瓶5元銷售,一天能售出500瓶;在此基礎上,銷售單價每漲0.1元,該日銷售量就減少10瓶.針對這種飲料的銷售情況,請解答以下問題:
(1)設銷售單價為每瓶x元,當日銷售量為y元,求y與x的函數(shù)關系式(不寫出x的取值范圍);
(2)設該日銷售利潤為w元,求w與x的函數(shù)關系式(不寫出x的取值范圍);
(3)該日銷售利潤為800元,求銷售單價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( 。
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三個等腰直角三角形Rt△ABE,Rt△BCF,Rt△CDG如圖擺放在射線AD上,直角頂點分別為B,C,D,已知相似比為2:3:4,AB=4,則(1)CG的長為_____;(2)圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有上禾三秉,益實六斗,當下禾十秉.下禾五秉,益實一斗,當上禾二秉.問上、下禾實一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當于兩捆上等稻子打?qū)鐏淼墓茸?/span>.問上等、下等稻子每捆能打多少斗谷子?設上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,過O點作OP⊥AB,交弦AC于點D,交⊙O于點E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com