【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖,后人稱其為趙爽弦圖(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF4,則S1+S2+S3的值是( 。

A.32B.38C.48D.80

【答案】C

【解析】

根據(jù)八個直角三角形全等,以及三個正方形組合,得出CG=KG,CF=DG=KF,再根據(jù)S1=(CG+DG2 ,S2GF2 ,S3=(KFNF2 S1+S2+S3=3EF2 求出EF

解:∵八個直角三角形全等,四邊形ABCD,EFGH,MNKT是正方形,

CGKGCFDGKF

S1=(CG+DG2

CG2+DG2+2CGDG

GF2+2CGDG

S2GF2EF2,

S3=(KFNF2KF2+NF22KFNF

S1+S2+S3GF2+2CGDG+GF2+KF2+NF22KFNF3GF23EF248,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為1的正方形網(wǎng)格中,的三個頂點、、都在格點上.

1)作關(guān)于關(guān)于軸的對稱圖形,(其中、的對稱點分別是、、),并寫出點坐標(biāo);

2軸上一點,請在圖中畫出使的周長最小時的點(不寫畫法,保留畫圖痕跡),并直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售櫻桃,已知櫻桃的進價為15/千克,如果售價為20/千克,那么每天可售出250千克,如果售價為25/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間 存在一次函數(shù)關(guān)系.

(1)求yx之間的函數(shù)關(guān)系式;

(2)若該超市每天要獲得利潤810元,同時又要讓消費者得到實惠,則售價x應(yīng)定于多少元?

(3)若櫻桃的售價不得高于28/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計的“作平行四邊形ABCD的邊AB的中點”的尺規(guī)作圖過程.

已知:平行四邊形ABCD

求作:點M,使點M 為邊AB 的中點.

作法:如圖,

作射線DA;

以點A 為圓心,BC長為半徑畫弧,

DA的延長線于點E;

連接EC AB于點M

所以點M 就是所求作的點.

根據(jù)小明設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形 (保留作圖痕跡)

(2)完成下面的證明.

證明:連接AC,EB

四邊形ABCD 是平行四邊形,

AEBC

AE= ,

四邊形EBCA 是平行四邊形( )(填推理的依據(jù))

AM =MB ( )(填推理的依據(jù))

M 為所求作的邊AB的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P和圖形W的“中點形”的定義如下:對于圖形W上的任意一點Q,連結(jié)PQ,取PQ的中點,由所以這些中點所組成的圖形,叫做點P和圖形W的“中點形”.

已知C(-2,2),D12),E10),F(-2,0).

1)若點O和線段CD的“中點形”為圖形G,則在點,,中,在圖形G上的點是 ;

2)已知點A2,0),請通過畫圖說明點A和四邊形CDEF的“中點形”是否為四邊形?若是,寫出四邊形各頂點的坐標(biāo),若不是,說明理由;

3)點B為直線y=2x上一點,記點B和四邊形CDEF的中點形為圖形M,若圖形M與四邊形CDEF有公共點,直接寫出點B的橫坐標(biāo)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B90°EAB上的一點,且AEBC,∠1=∠2

求證:△CED是等腰直角三角形

證明:∵∠1=∠2   

EC   (在一個三角形中,等角對等邊)

∵∠A=∠B90°,AEBC

∴△AED≌△BCE   

∴∠AED=∠      

∵∠BCE+BEC90°

   +BEC90°(等量代換)

∴∠DEC90°

∴△CED是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四根長度分別為3,45,xx為正整數(shù))的木棒,從中任取三根,首尾順次相接都能組成一個三角形則組成的三角形的周長(

A.最小值是11B.最小值是12C.最大值是14D.最大值是15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳市民中心廣場上有旗桿如圖①所示,某學(xué)校興趣小組測量了該旗桿的高度,如圖②,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時刻,太陽光線與水平面的夾角為45°.1米的標(biāo)桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.

查看答案和解析>>

同步練習(xí)冊答案