(1)如圖1,BO、CO分別是△ABC中∠ABC和∠ACB的平分線,則∠BOC與∠A的關系是
90°+
1
2
∠A
90°+
1
2
∠A
(直接寫出結論);
(2)如圖2,BO、CO分別是△ABC兩個外角∠CBD和∠BCE的平分線,則∠BOC與∠A的關系是
90°-
1
2
∠A
90°-
1
2
∠A
,請證明你的結論.
(3)如圖3,BO、CO分別是△ABC一個內角和一個外角的平分線,則∠BOC與∠A的關系是
1
2
∠A
1
2
∠A
,請證明你的結論.
(4)利用以上結論完成以下問題:如圖4,已知:∠DOF=90°,點A、B分別是射線OF、OD上的動點,△ABO的外角∠OBE的平分線與內角∠OAB的平分線相交于點P,猜想∠P的大小是否變化?請證明你的猜想.
分析:(1)先根據(jù)三角形內角和定理求出∠ABC+∠ACB的度數(shù),再根據(jù)BO、CO分別平分∠ABC與∠ACB求出∠1+∠2的度數(shù),由三角形內角和定理即可得出∠BOC的度數(shù);
(2)由三角形的一個外角等于與它不相鄰的兩個內角的和可證2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根據(jù)三角形內角和定理可證2∠BOC=180°-∠A,即
∠BOC=90°-
1
2
∠A;
(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和以及角平分線的定義表示出∠OBC與∠OCB,然后再根據(jù)三角形的內角和定理列式整理即可得解;
(4)利用(3)中的解題思路證得∠P的大小不會變化始終為45°.
解答:解:(1)∠BOC=90°+
1
2
∠A.理由如下:
如圖1,∵∠ABC+∠ACB=180°-∠A,BO、CO分別是∠ABC、∠ACB的角平分線,
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=90°-
1
2
∠A,
∴∠BOC=180°-(∠1+∠2)=90°+
1
2
∠A;
故答案是:90°+
1
2
∠A;

(2)∠BOC=90°-
1
2
∠A.
證明:如圖2,∵BD平分∠DBC,
∴∠OBC=
1
2
∠DBC.
同理可證:∠OCB=
1
2
∠BCE.
∴∠OBC+∠OCB=
1
2
(∠DBC+∠BCE),
∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,
∴∠OBC+∠OCB=
1
2
(∠A+∠ACB+∠ABC+∠A)=
1
2
(180°+∠A)=90°+
1
2
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°-
1
2
∠A;
故答案是:90°-
1
2
∠A;

(3)∠BOC=
1
2
∠A;
證明:∵CO平分∠ACD    BO平分∠ABC
∴∠OCD=
1
2
∠ACD∠OBC=
1
2
∠ABC
∵∠OCD是△OBC的外角
∴∠BOC=∠OCD-∠OBC
=
1
2
(∠ACD-∠ABC)
∵∠ACD是△ABC的外角
∴∠ACD-∠ABC=∠A
∴∠BOC=
1
2
∠A;
故答案是:
1
2
∠A;

(4)∠P的大小沒有變化.
根據(jù)(3)可得:∠P=
1
2
∠AOB
∵∠AOB=90°
∴∠P=45°
∴∠P的大小不會變化始終為45°.
點評:本題考查三角形外角的性質、角平分線線的性質及三角形的內角和定理,解答的關鍵是溝通外角和內角的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)如圖1,BO、CO分別是△ABC中∠ABC和∠ACB的平分線,則∠BOC與∠A的關系是
 
;
(2)如圖2,BO、CO分別是△ABC兩個外角∠CBD和∠BCE的平分線,則∠BOC與∠A的關系是
 
;
(3)如圖3,BO、CO分別是△ABC一個內角和一個外角的平分線,則∠BOC與∠A的關系是
 

(4)請就圖2及圖2中的結論進行證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AO=BO,CO=DO,AD與BC交于E,則圖中全等三角形的對數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AO⊥BO,直線CD經過點O,∠AOC=110°,則∠BOD=
20
20
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,BO、CO分別為∠ABC和∠ACB的平分線,我們易得∠BOC=90°+
12
∠A(不必證明,本題可直接運用);在圖②中,當BO′、CO′分別為∠ABC和∠ACB的外角平分線時,求∠BO′C與∠A的數(shù)量關系.我們可以利用“轉化”的思想,將未知的∠BO′C轉化為已知的∠BOC:如圖②,作BO、CO平分∠ABC和∠ACB.

(1)在圖②中存在如圖③的基本圖形:點A、B、D在同一直線上,且BO、BO′分別平分∠ABC和∠DBC,試證明:BO⊥BO′;
(2)試直接利用上述基本圖形的結論,猜想并證明圖②中∠BO′C與∠A的數(shù)量關系;
(3)如圖④,BP、CP分別為內角∠ABC和外角∠ACF的平分線,試運用上述轉化的思想猜想并證明∠BPC與∠A的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AO⊥BO,∠1=∠3.求證:CO⊥DO.

查看答案和解析>>

同步練習冊答案