【題目】命題“同位角相等,兩直線平行”的逆命題是: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一動點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時,AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系式 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時,試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.
(1)如圖①所示兩個等腰直角△ABC,△DBE,兩直角邊交于點(diǎn)F,連接BF、AD,求證:BF=AD;
(2)如果小華將兩塊三角板△ABC,△DBE如圖②所示擺放,使D、B、C三點(diǎn)在一條直線上,AC、DE的延長線相交于點(diǎn)F,過點(diǎn)F作FG∥BC,交直線AE于點(diǎn)G,連接AD,F(xiàn)B,求證:FG=AC+DC;
(3)在(2)的條件下,若AG=7,DC=5,將一個45°角的頂點(diǎn)與點(diǎn)B重合,并繞點(diǎn)B旋轉(zhuǎn),這個角的兩邊分別交線段FG于P、Q兩點(diǎn)(如圖③),若PG=2,求線段FQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①兩直線平行,內(nèi)錯角相等;②對頂角相等;③等腰三角形的兩個底角相等;④菱形的對角線互相垂直,其中逆命題是真命題的是( 。
A. ①②③④B. ①③④C. ①③D. ①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=與x軸交于A、B兩點(diǎn).
(1)點(diǎn)A的坐標(biāo)是 ,點(diǎn)B的坐標(biāo)是 ,拋物線的對稱軸是直線 ;
(2)將拋物線向上平移m個單位,與x軸交于C、D兩點(diǎn)(點(diǎn)C 在點(diǎn)D的左邊).若CD:AB=3:4,求m的值;
(3)點(diǎn)P是(2)中平移后的拋物線上y軸右側(cè)部分的點(diǎn),直線y=2x+b(b0)與 x、y軸分別交于點(diǎn)E、F.若以EF為直角邊的三角形PEF與△OEF相似,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺階AC的坡度為1:(即AB:BC=1:),且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側(cè)傾器的高度忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠DPF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組線段為邊,能組成三角形的是().
A. 2cm,3cm,5cmB. 5cm,6cm,10cm
C. 1cm,1cm,3cmD. 3cm,4cm,9cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com