【題目】如圖,在菱形ABCD中,∠ABC+∠ADC=120°,將一透明三角板60°角的頂點落在點A上,并繞著點A旋轉,三角板的兩邊分別交BC、CD于點E、F.
(1)如圖1,求∠BAD的度數(shù);
(2)如圖2,求證:BE+DF=AB;
(3)如圖3,在(2)的條件下,取AB中點G,作等邊△EGH,連接AH,延長GH剛好與平行四邊形ABCD交于點D,若AH⊥AB,△EGH的面積為.求DH的長.
【答案】(1)120° (2)證明見解析 (3)
【解析】
(1)根據(jù)菱形和平行線的性質可得,再根據(jù),可得,即可求出的度數(shù);
(2)連接AC,根據(jù)菱形的性質和三角板的性質可得△ACD和△ABC是等邊三角形,即可證明,可得,即可得證;;
(3)延長AH與CD交于點O,連接AC、OG,通過證明四邊形AGOD是平行四邊形,可得,再根據(jù)勾股定理求出GH的長度即可.
(1)∵四邊形ABCD是菱形
∴
∵
∴
∴;
(2)連接AC
根據(jù)三角板的性質得
∵四邊形ABCD是菱形,
∴
∴△ACD和△ABC是等邊三角形
∴
∴
在△ACE和△ADF中
∴
∴
∴
∴;
(3)延長AH與CD交于點O,連接AC、OG
∵
∴
∴
∴
∴
∵四邊形ABCD是菱形
∴
∴△ACD是等邊三角形
∴
∵G是AB的中點
∴
∴四邊形AGOD是平行四邊形
∴GH、HD是平行四邊形AGOD的對角線
∴
∵△EGH是等邊三角形,△EGH的面積為
∴
解得
∴ .
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解某個年級的學習情況,在這個年級抽取了50名學生,對某學科進行測試,將所得成績(成績均為整數(shù))整理后,列出表格:
分組 | 50~59分 | 60~69分 | 70~79分 | 80~89分 | 90~99分 |
頻率 | 0.04 | 0.04 | 0.16 | 0.34 | 0.42 |
(1)本次測試90分以上的人數(shù)有________人;(包括90分)
(2)本次測試這50名學生成績的及格率是________;(60分以上為及格,包括60分)
(3)這個年級此學科的學習情況如何?請在下列三個選項中,選一個填在題后的橫線上________.
A.好 B.一般 C.不好
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.
①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;
②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結論;
(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運動,設 M、N 分別從點 B、A 同時出發(fā),運動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當 t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當 t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點Q從點A開始沿AB邊向點B以1cm/s的速度移動,點P從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果Q、P分別從A、B兩點出發(fā),那么幾秒后,△PBQ的面積等于8cm2?
(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com