【題目】如圖,矩形中,,點是邊上一點,聯(lián)結(jié),過點,交點,將沿直線翻折,點落在點,若為等腰三角形,則的長為__________

【答案】1

【解析】

為等腰三角形,則需分以下三種情況進(jìn)行討論,①若,根據(jù)BP=PD列出方程即可解出;②若,作出輔助線,證明△ABP≌△AAS),根據(jù)等腰三角形的性質(zhì)得出PF=DF=,再結(jié)合全等三角形的性質(zhì)得到AP=PF,列出方程求解即可;③若,作出輔助線,在Rt中運用勾股定理列出方程求解即可.

解:設(shè)AP=x,則PD=3-x,

PEBP

沿直線翻折后,PE⊥

∵四邊形ABCD是矩形,

∴∠A=90°,

,

①若

BP=PD

解得:

②若,

過點FADAD于點F,如下圖1所示,

PF=DF=

又∵,∠A=FP,∠APB=∠PF,

∴△ABP≌△AAS

AP=PF

解得:

③若

過點FADAD于點F,如圖1所示,

,∠A=FP,∠APB=∠PF

∴△ABP≌△AAS

PF=AP=x,

FD=3-2x,

Rt中,,

,此方程無解,故不存在這種情況,

綜上所述:的長為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C,D⊙O上,且點C的中點,過點 CAD的垂線 EF交直線 AD于點 E

1)求證:EF⊙O的切線;

2)連接BC,若AB=5,BC=3,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠制作AB兩種型號的環(huán)保包裝盒.已知用3米同樣的材料分別制成A型盒的個數(shù)比制成B型盒的個數(shù)少1個,且制作一個A型盒比制作一個B型盒要多用20%的材料.求制作每個A,B型盒各用多少材料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都市空氣質(zhì)量整治領(lǐng)導(dǎo)小組近期提出保護好環(huán)境,拒絕冒黑煙.某公交公司將淘汰某一條線路上冒黑煙較嚴(yán)重的公交車,計劃購買型和型兩種環(huán)保節(jié)能的公交車10輛.若購買型公交車1輛,型公交車2輛,共需400萬元;若購買型公交車2輛,型公交車1輛,共需350萬元.

1)求購買型和型公交車每輛各需多少萬元?

2)預(yù)計在該線路上型和型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買型和型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,的頂點均在格點上,建立平面直角坐標(biāo)系后,點的坐標(biāo)為,點的坐標(biāo)為

1)先將向右平移5個單位,再向下平移1個單位后得到,試在圖中畫出圖形;

2)將繞點順時針旋轉(zhuǎn)90°后得到,試在圖中畫出圖形,并計算的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)

(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關(guān)系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當(dāng)客車進(jìn)入B加油站時,貨車恰好進(jìn)入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(2,1)和(0,﹣2).

1)求出該函數(shù)圖象與x軸的交點坐標(biāo);

2)判斷點(﹣4,6)是否在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABC外接圓上的點,且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點FBGAD,垂足為GBGDE于點H,DCFB的延長線交于點P,且PC=PB

(1)求證:∠BAD=PCB;

(2)求證:BGCD;

(3)設(shè)ABC外接圓的圓心為O,若AB=DH,COD=23°,求∠P的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案