4.如圖,正方形ABCD的邊長為1,AC,BD是對角線.將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正確的結(jié)論是①②③.

分析 首先證明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度數(shù),推出AE=EG=FG=AF,由此可以一一判斷.

解答 證明:∵四邊形ABCD是正方形,
∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,
∵△DHG是由△DBC旋轉(zhuǎn)得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在Rt△ADE和Rt△GDE中,
$\left\{\begin{array}{l}{DE=DE}\\{DA=DG}\end{array}\right.$,
∴AED≌△GED,故②正確,
∴∠ADE=∠EDG=22.5°,AE=EG,
∴∠AED=∠AFE=67.5°,
∴AE=AF,同理△AEF≌△GEF,可得EG=GF,
∴AE=EG=GF=FA,
∴四邊形AEGF是菱形,故①正確,
∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正確.
∵AE=FG=EG=BG,BE=$\sqrt{2}$AE,
∴BE>AE,
∴AE<$\frac{1}{2}$,
∴CB+FG<1.5,故④錯誤.
故答案為①②③.

點評 本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、菱形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是通過計算發(fā)現(xiàn)角相等,學(xué)會這種證明角相等的方法,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列計算結(jié)果正確的是(  )
A.8x6÷2x3=4x2B.x2+x3=x5C.(-3x2y)3=-9x6y3D.x•x2=x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.在如圖的2016年6月份的月歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是(  )
A.27B.51C.69D.72

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( 。
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.已知關(guān)于x的方程mx+3=4的解為x=1,則直線y=(m-2)x-3一定不經(jīng)過第一象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.
(1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在正方形ABCD中,點E,N,P,G分別在邊AB,BC,CD,DA上,點M,F(xiàn),Q都在對角線BD上,且四邊形MNPQ和AEFG均為正方形,則$\frac{{S}_{正方形MNPQ}}{{S}_{正方形AEFG}}$的值等于$\frac{8}{9}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知四邊形ABEC內(nèi)接于⊙O,點D在AC的延長線上,CE平分∠BCD交⊙O于點E,則下列結(jié)論中一定正確的是( 。
A.AB=AEB.AB=BEC.AE=BED.AB=AC

查看答案和解析>>

同步練習(xí)冊答案