【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E,要使DE是⊙O的切線,還需補(bǔ)充一個(gè)條件,則補(bǔ)充的條件不正確的是(
A.DE=DO
B.AB=AC
C.CD=DB
D.AC∥OD

【答案】A
【解析】解:當(dāng)AB=AC時(shí),如圖:連接AD, ∵AB是⊙O的直徑,
∴AD⊥BC,
∴CD=BD,
∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
所以B正確.
當(dāng)CD=BD時(shí),AO=BO,∴OD是△ABC的中位線,
∴OD∥AC
∵DE⊥AC
∴DE⊥OD
∴DE是⊙O的切線.
所以C正確.
當(dāng)AC∥OD時(shí),∵DE⊥AC,∴DE⊥OD.
∴DE是⊙O的切線.
所以D正確.
故選A.

【考點(diǎn)精析】本題主要考查了圓周角定理和切線的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:2﹣=2×+1,5﹣=5×+1,給出定義如下:我們稱使等式abab+1的成立的一對(duì)有理數(shù)a,b為“共生有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)(2,),(5,),都是“共生有理數(shù)對(duì)”.

(1)數(shù)對(duì)(﹣2,1),(3,)中是“共生有理數(shù)對(duì)”的是   

(2)若(m,n)是“共生有理數(shù)對(duì)”,則(﹣n,﹣m   “共生有理數(shù)對(duì)”(填“是”或“不是”);

(3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“共生有理數(shù)對(duì)”為   ;(注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))

(4)若(a,3)是“共生有理數(shù)對(duì)”,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C﹣D﹣E上移動(dòng),若點(diǎn)C、D、E的坐標(biāo)分別為(﹣1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)判斷OEOF的大小關(guān)系?并說(shuō)明理由?

(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí),四邊形BCFE會(huì)是菱形嗎?若是,請(qǐng)證明;若不是,則說(shuō)明理由;

(3)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組想測(cè)量河流的寬度AB,河流兩岸AC,BD互相平行,河流對(duì)岸有兩棵樹A和C,且A、C之間的距離是60m,他們?cè)贒處測(cè)得∠BDC=36°,前行140米后測(cè)得∠BPA=45°,請(qǐng)根據(jù)這些數(shù)據(jù)求出河流的寬度.
(結(jié)果精確到0.1米,參考數(shù)據(jù):tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了數(shù)軸后,小亮決定對(duì)數(shù)軸進(jìn)行變化應(yīng)用:

(1)應(yīng)用一:已知點(diǎn)A在數(shù)軸上表示為,數(shù)軸上任意一點(diǎn)B表示的數(shù)為,則AB兩點(diǎn)的距離可以表示為 ;應(yīng)用這個(gè)知識(shí),請(qǐng)寫出當(dāng) 時(shí),有最小值為 .

(2)應(yīng)用二:從數(shù)軸上取下一個(gè)單位長(zhǎng)度的線段,第一次剪掉原長(zhǎng)的,第二次剪掉剩下的,依次類推,每次都剪掉剩下的,則剪掉5次后剩下線段長(zhǎng)度為 ;應(yīng)用這個(gè)原理,請(qǐng)計(jì)算:.

(3)應(yīng)用三:如圖,將一根拉直的細(xì)線看作數(shù)軸,一個(gè)三邊長(zhǎng)分別為的三角形的頂點(diǎn)與原點(diǎn)重合,邊在數(shù)軸正半軸上,將數(shù)軸正半軸的線沿的順序依次纏繞在三角形的邊上,負(fù)半軸的線沿的順序依次纏繞在三角形的邊上.

①如果正半軸的線纏繞了5圈,負(fù)半軸的線纏繞了3圈,求繞在點(diǎn)上的所有數(shù)之和;

②如果正半軸的線不變,將負(fù)半軸的線拉長(zhǎng)一倍,即原線上的點(diǎn)的位置對(duì)應(yīng)著拉長(zhǎng)后的數(shù),并將三角形向正半軸平移一個(gè)單位后再開始繞,求繞在點(diǎn)且絕對(duì)值不超過(guò)100的所有數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張矩形ABCD紙片按如圖方式折疊,使點(diǎn)A與點(diǎn)E重合,點(diǎn)C與點(diǎn)F重合(E、F兩點(diǎn)均在BD上),折痕分別為BH、DG.
(1)求證:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求線段FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近兩年,國(guó)際市場(chǎng)黃金價(jià)格漲幅較大,中國(guó)交通銀行推出沃德金的理財(cái)產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價(jià)格的上漲中賺取利潤(rùn).上周五黃金的收盤價(jià)為285/克,下表是本周星期一至星期五黃金價(jià)格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)

星期

收盤價(jià)的變化(與前一天收盤價(jià)比較)

+7

+5

+8

問(wèn):(1)本周星期三黃金的收盤價(jià)是多少?

(2)本周黃金收盤時(shí)的最高價(jià).最低價(jià)分別是多少?

(3)上周,小王以周五的收盤價(jià)285/克買入黃金1000克,已知買入與賣出時(shí)均需支付成交金額的千分之五的交易費(fèi),賣出黃金時(shí)需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價(jià)全部賣出黃金1000克,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過(guò)平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個(gè)單位長(zhǎng)度;△AOC與△BOD關(guān)于直線對(duì)稱,則對(duì)稱軸是;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案