【題目】已知,△ABC中,∠ACB=90°,AC=BC,點(diǎn)E是BC上一點(diǎn),連接AE
(1)如圖1,當(dāng)AE平分∠BAC時(shí),EH⊥AB于H,△EHB的周長(zhǎng)為10m,求AB的長(zhǎng);
(2)如圖2,延長(zhǎng)BC至D,使DC=BC,將線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得線段AF,連接DF,過(guò)點(diǎn)B作BG⊥BC,交FC的延長(zhǎng)線于點(diǎn)G,求證:BG=BE.
【答案】(1)AB=10m;(2)見(jiàn)解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠B=45°,根據(jù)角平分線的性質(zhì)得到CE=EH=BH,根據(jù)全等三角形的性質(zhì)得到AH=AC,于是得到結(jié)論;
(2)先連接AD,依據(jù)AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,進(jìn)而得到BG=BE.
解:(1)∵∠ACB=90°,AC=BC,
∴∠B=45°,
∵AE平分∠BAC時(shí),EH⊥AB于H,
∴CE=EH=BH,
在Rt△ACE與Rt△AHE中,
,
∴Rt△ACE與Rt△AHE(HL),
∴AH=AC,
∴AH=BC,
∵△EHB的周長(zhǎng)為10m,
∴AB=AH+BH=BC+BH=10m;
(2)如圖所示,連接AD,
線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得線段AF,則AE=AF,∠EAF=90°,
∵AC⊥BD,DC=BC,
∴AD=AB,∠ABE=∠ADC=45°,
∴∠BAD=90°=∠EAF,
∴∠BAE=∠DAF,
∴△ABE≌△ADF(SAS),
∴DF=BE,∠ADF=∠ABE=45°,
∴∠FDC=90°,
∵BG⊥BC,
∴∠CBG=∠CDF=90°,
又∵BC=DC,∠BCG=∠DCF,
∴△BCG≌△DCF(ASA),
∴DF=BG,
∴BG=BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在的正北方向,在的正東方向,且.某一時(shí)刻,甲車(chē)從出發(fā),以的速度朝正東方向行駛,與此同時(shí),乙車(chē)從出發(fā),以的速度朝正北方向行駛.小時(shí)后,位于點(diǎn)處的觀察員發(fā)現(xiàn)甲、乙兩車(chē)之間的夾角為,即,此時(shí),甲、乙兩人相距的距離為( )
A. 90km B. 50 km C. 20 km D. 100km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,點(diǎn) D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+∠E=295°, 則∠A 是( )
A.65°B.60°C.55°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,是對(duì)角線上一點(diǎn),過(guò)點(diǎn)作矩形,其中點(diǎn)在上,點(diǎn)在上.
求的度數(shù);
試說(shuō)明,;
若正方形的面積為,求矩形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于點(diǎn)N,連接BM、DN.
求證:四邊形BMDN是菱形;
若,,求菱形BMDN的面積和對(duì)角線MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動(dòng)點(diǎn)C從點(diǎn)O出發(fā),沿射線OB方向移動(dòng),以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地要建造一個(gè)圓形噴水池,在水池中央垂直于地面安裝一個(gè)柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下.在過(guò)OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達(dá)到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com