如圖,在Rt△ABC中,AC=AB,∠BAC=90°,點(diǎn)O是BC的中點(diǎn),連結(jié)OA.

(1)如圖1,已知BC=6,則OA=_________.

(2)如圖2,若點(diǎn)M,N分別在線段AB,AC上移動(dòng),在移動(dòng)中始終保持AN=BM,則△OAN≌△OBM成立嗎?并說(shuō)明理由.

(3)如圖3,若點(diǎn)M,N分別在線段BA.AC的延長(zhǎng)線上移動(dòng),在移動(dòng)中始終保持AN=BM,請(qǐng)判斷△OMN的形狀,并說(shuō)明理由.

 

 

 

【答案】

(1)

(2)△OAN≌△OBM

理由如下:∵AC=AB,∠BAC=90°

              ∴∠B=45°

∵點(diǎn)O是BC的中點(diǎn)

∴∠NAO=45°

∴∠B=∠NAO

∵∠BAC=90°,點(diǎn)O是BC的中點(diǎn)

 ∴

            又∵AN=BM,

              ∴△OAN≌△OBM

(3)△OMN是等腰直角三角形

理由如下:∵AC=AB,AN=BM

          ∴NC=MA

          ∵∠BAO=∠ACO=45°

          ∴∠MAO=135°=∠NCO

        又∵AO=CO

          ∴△OAM≌△OCN

          ∴MO=NO, ∠MOA=∠NOC

          ∵AB=AC,點(diǎn)O是BC的中點(diǎn)

          ∴∠AOC=90°

          ∴∠MOA+∠MOC=90°

          ∴∠NOC+∠MOC=90°

              ∴△OMN是等腰直角三角形

【解析】(1)直角三角形斜邊上的中線等于斜邊的一半;

(2)利用SAS判定兩個(gè)三角形全等;

(3)通過(guò)證明三角形全等可得MO=NO,易得∠NOC+∠MOC=90°,所以三角形OMN是等腰直角三角形。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案