【題目】如圖,在RtABC中,∠C90°,AC6BC8,則ABC的外心和內(nèi)心之間的距離為_____

【答案】

【解析】

ABC的內(nèi)切圓⊙M,過(guò)點(diǎn)MMDBCD,MEACE,MNABN.先根據(jù)勾股定理求出AB10,得到ABC的外接圓半徑AO5,再證明四邊形MECD是正方形,根據(jù)內(nèi)心的性質(zhì)和切線長(zhǎng)定理,求出⊙M的半徑r2,則ON1,然后在RtOMN中,運(yùn)用勾股定理即可求解.

解:設(shè)ABC的內(nèi)切圓⊙M,OACB的外接圓的圓心,過(guò)點(diǎn)MMDBCD,MEACE,MNABN

RtABC中,∵∠ACB90°AC6,BC8,

AB10

∵點(diǎn)OABC的外心,

AO為外接圓半徑,AOAB5,

設(shè)⊙M的半徑為r,則MDMEr,

又∵∠MDC=∠MEC=∠C90°,

∴四邊形IECD是正方形,

CECDr,AEAN6r,BDBN8r,

AB10

解得:r2,

MNr2ANAE6r624,

RtOMN中,∵∠MNO90°ONAOAN541,

OM,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個(gè)根是x1=1x2=3;

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個(gè)數(shù)是(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)yx24x+3

1)求其圖象與x軸交點(diǎn)A、B的坐標(biāo)(AB左邊);

2)在坐標(biāo)系中畫出函數(shù)圖象;

3)若函數(shù)圖形的頂點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2+xy+y12,y2+xy+x18,求代數(shù)式3x2+3y22xy+x+y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(0, )為圓心,以 長(zhǎng)為半徑作⊙Mx軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),連接AM并延長(zhǎng)交⊙MP點(diǎn),連接PCx軸于E.

(1)求出CP所在直線的解析式;

(2)連接AC,請(qǐng)求△ACP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在改革開(kāi)放30年紀(jì)念活動(dòng)中,某校學(xué)生會(huì)就同學(xué)們對(duì)我國(guó)改革開(kāi)放30年所取得的輝煌成就的了解程度進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖的一部分.

根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)本次抽樣調(diào)查的樣本容量是 .調(diào)查中了解很少的學(xué)生占 %

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校共有學(xué)生1300人,那么該校約有多少名學(xué)生很了解我國(guó)改革開(kāi)放30年來(lái)取得的輝煌成就.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長(zhǎng)為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE90°,AB4,AE2,其中△ABC固定,△ADE繞點(diǎn)A360°旋轉(zhuǎn),點(diǎn)F、MN分別為線段BE、BC、CD的中點(diǎn),連接MN、NF

問(wèn)題提出:(1)如圖1,當(dāng)AD在線段AC上時(shí),則∠MNF的度數(shù)為   ,線段MN和線段NF的數(shù)量關(guān)系為  

深入討論:(2)如圖2,當(dāng)AD不在線段AC上時(shí),請(qǐng)求出∠MNF的度數(shù)及線段MN和線段NF的數(shù)量關(guān)系;

拓展延伸:(3)如圖3,△ADE持續(xù)旋轉(zhuǎn)過(guò)程中,若CEBD交點(diǎn)為P,則△BCP面積的最小值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當(dāng)x30,求y與x之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案