【題目】如圖,某漁船在海面上朝正西方向以20海里/時勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達B處,此時觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)

【答案】解:如圖,過點C作CD⊥AB于點D,

AB=20×1=20(海里),
∵∠CAF=60°,∠CBE=30°,
∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°﹣∠CAF=30°,
∴∠C=180°﹣∠CBA﹣∠CAB=30°,
∴∠C=∠CAB,
∴BC=BA=20(海里),
∠CBD=90°﹣∠CBE=60°,
∴CD=BCsin∠CBD= ≈17(海里).
【解析】過點C作CD⊥AB于點D,則若該船繼續(xù)向西航行至離燈塔距離最近的位置為CD的長度,利用銳角三角函數(shù)關(guān)系進行求解即可.
【考點精析】利用銳角三角函數(shù)的定義對題目進行判斷即可得到答案,需要熟知銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】早晨,小明步行到離家900米的學校去上學,到學校時發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學校.已知小明步行從學校到家所用的時間比他騎自行車從家到學校所用的時間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時間不超過騎自行車從學校到家時間的2倍,那么小明家與圖書館之間的路程最多是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,點A坐標為(0,1),點B坐標為(0,﹣2),反比例函數(shù)y= 的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過A,C兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:

售價x(元/千克)

50

60

70

80

銷售量y(千克)

100

90

80

70


(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4m時,拱頂(拱橋洞的最高點)離水面2m,當水面下降1m時,水面的寬度為( )

A.3
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,tanα=

(1)求k的值.
(2)求點B的坐標.
(3)設(shè)點P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中C=900,B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點C旋轉(zhuǎn)。當點D恰好落在BC邊上時,填空:線段DEAC的位置關(guān)系是 ;

設(shè)BDC的面積為S1,AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBCCE邊上的高,請你證明小明的猜想。

3)拓展探究

已知ABC=600D是其角平分線上一點,BD=CD=4OEABBC于點E(如圖4),若在射線BA上存在點F,使SDCF =SBDC,直接寫出相應(yīng)的BF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC=90,ADBCDABC的平分線分別交ACADE、F兩點,MEF的中點,延長AMBC于點N,連接DM.下列結(jié)論:①AE=AFAMEF;AF=DF;DF=DN,其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案