如圖5,已知鈍角,是直角,OD平分∠BOC,OE平分

AOC,求∠DOE的度數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直線l上擺放著三個正方形

(1)如圖1,已知水平放置的兩個正方形的邊長依次是a,b斜著放置的正方形的面積S=
a2+b2
a2+b2
,兩個直角三角形的面積和為
ab
ab
;(均用a,b表示)
(2)如圖2,小正方形面積S1=1,斜著放置的正方形的面積S=4,求圖中兩個鈍角三角形的面積m1和m2,并給出圖中四個三角形的面積關(guān)系;
(3)圖3是由五個正方形所搭成的平面圖,T與S分別表示所在的三角形與正方形的面積,試寫出T與S的關(guān)系式,并利用(1)和(2)的結(jié)論說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣一模)如圖1,已知:已知:等邊△ABC,點D是邊BC上一點(點D不與點B、點C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點A順時針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實踐探索:
(1)請你仿照上面的思路,探索解決下面的問題:
如圖3,點D是等腰直角三角形△ABC邊上的點(點D不與B、C重合).求證:BD+DC>
2
AD.
(2)如果點D運動到等腰直角三角形△ABC外或內(nèi)時,BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點,且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點ABD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=ACD、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3) 拓展與應(yīng)用:如圖(3),D、EDA、E三點所在直線m上的兩動點(DA、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知:已知:等邊△ABC,點D是邊BC上一點(點D不與點B、點C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點A順時針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實踐探索:
(1)請你仿照上面的思路,探索解決下面的問題:
如圖3,點D是等腰直角三角形△ABC邊上的點(點D不與B、C重合).求證:BD+DC>數(shù)學(xué)公式AD.
(2)如果點D運動到等腰直角三角形△ABC外或內(nèi)時,BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點,且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

同步練習(xí)冊答案