【題目】如圖,已知⊙O的半徑為5,弦AB=8,CD=6,則圖中陰影部分面積為( )
A. π–24 B. 9π C. π–12 D. 9π–6
【答案】A
【解析】
過點(diǎn)O作OE⊥AB于E,作OF⊥CD于F,根據(jù)垂徑定理求出AE、CF,再利用勾股定理列式求出OE=OF,從而得到AE=OF,OE=CF,然后利用“邊角邊”證明△AOE和△OCF全等,根據(jù)全等三角形對應(yīng)角相等可得∠AOE=∠OCF,再求出∠AOE+∠COF=90°,然后求出∠AOB+∠COD=180°,把弧CD旋轉(zhuǎn)到點(diǎn)D與點(diǎn)B重合,構(gòu)建直角三角形ABC;然后根據(jù)圓的面積公式和直角三角形的面積公式來求陰影部分的面積:陰影面積=半圓面積-直角三角形ABC的面積.
解:如圖1,過點(diǎn)O作OE⊥AB于E,作OF⊥CD于F,
由垂徑定理得,AE=AB=×8=4,CF=CD=×6=3,
由勾股定理得,OE===3,
OF===4,
∴AE=OF,OE=CF,
在△AOE和△OCF中,,
∴△AOE≌△OCF(SAS),∴∠AOE=∠OCF,
∵∠OCF+∠COF=90°,∴∠AOE+∠COF=90°,
∴∠AOB+∠COD=2(∠AOE+∠COF)=2×90°=180°,
如圖2把弧CD旋轉(zhuǎn)到點(diǎn)D與點(diǎn)B重合.
∴△ABC為直角三角形,且AC為圓的直徑;
∵AB=8,CD=6,∴AC=10(勾股定理),
∴陰影部分的面積=S半圓–S△ABC=π×52–×6×8=π–24;
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是的中點(diǎn),AE與BC交于點(diǎn)F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長;
②求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時(shí),求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個動點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=8cm,AC=6cm,動點(diǎn)P從點(diǎn)C出發(fā)沿CB方向以3cm/s的速度向點(diǎn)B運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以2cm/s的速度向點(diǎn)A運(yùn)動,將△APQ沿直線AB翻折得△AP′Q,若四邊形APQP′為菱形,則運(yùn)動時(shí)間為( 。
A. 1sB. sC. sD. s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:
①x1=2,x2=3; ②;
③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).
其中,正確結(jié)論的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:已知α、β均為銳角,tanα=,tanβ=,求α+β的度數(shù).
探究:(1)用6個小正方形構(gòu)造如圖所示的網(wǎng)格圖(每個小正方形的邊長均為1),請借助這個網(wǎng)格圖求出α+β的度數(shù);
延伸:(2)設(shè)經(jīng)過圖中M、P、H三點(diǎn)的圓弧與AH交于R,求的弧長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com