【題目】如圖,C為線(xiàn)段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、DABBDEDBD,連結(jié)AC、EC.已知AB6,DE2BD15,設(shè)CDx

1)用含x的代數(shù)式表示AC+CE的值;(寫(xiě)出過(guò)程)

2)請(qǐng)問(wèn)點(diǎn)C滿(mǎn)足條件  時(shí),AC+CE的值最;

3)根據(jù)(2)中的結(jié)論,畫(huà)圖并標(biāo)上數(shù)據(jù),求代數(shù)式的最小值.

【答案】1AC+CE;(2)點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線(xiàn)上;(3)最小值為5

【解析】

1)設(shè)CDx,則BC15x,由于△ABC和△CDE都是直角三角形,故ACCE可由勾股定理求得從而得解;
2)若點(diǎn)C不在AE的連線(xiàn)上,根據(jù)三角形中任意兩邊之和>第三邊知,AC+CEAE,故當(dāng)A、C、E三點(diǎn)共線(xiàn)時(shí),AC+CE的值最小;
3)結(jié)合圖形可得ABDE,從而可得到,列出方程求解可得到CDBC的值,由(2)可知此時(shí)代入代數(shù)式中計(jì)算可得出最小值.

1)∵AB6DE2,BD15,

設(shè)CDxBC15x,根據(jù)勾股定理,得

AC+CE +

2)根據(jù)兩點(diǎn)之間線(xiàn)段最短可知:

當(dāng)點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線(xiàn)上時(shí),AC+CE的值最;

故答案為:點(diǎn)C與點(diǎn)A和點(diǎn)E在同一條直線(xiàn)上.

3)如圖所示:

ABBDEDBD,

ABDE

,即

解得x,則4x,

5

答:代數(shù)式的最小值為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,對(duì)角線(xiàn)BDAC平分,那么再加上下述中的條件( 可以得到結(jié)論: “四邊形ABCD是平行四邊形

A.AB=CD B.BAD=BCDC.ABC=ADC D.AC= BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)分別落在邊長(zhǎng)為1的正方形格上,

1)分別寫(xiě)出A、BC三點(diǎn)坐標(biāo);

2DEF可以看作是ABC經(jīng)過(guò)若干次的圖形變化(軸對(duì)稱(chēng)、平移)得到的,寫(xiě)出一種由ABC得到DEF的過(guò)程,并體現(xiàn)在坐標(biāo)系中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)DBC邊上,點(diǎn)EAB的延長(zhǎng)線(xiàn)上,將DED點(diǎn)順時(shí)針旋轉(zhuǎn)120°得到DF

1)如圖1,若點(diǎn)F恰好落在AC邊上,求證:點(diǎn)DBC的中點(diǎn);

2)如圖2,在(1)的條件下,若=45°,連接AD,求證:;

3)如圖3,若,連CF,當(dāng)CF取最小值時(shí),直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過(guò)AB的中點(diǎn)DOB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過(guò)動(dòng)點(diǎn)P分別作軸x、y軸的平行線(xiàn),交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.

(1)求k的值;

(2)用含m的代數(shù)式表示CD的長(zhǎng);

(3)求Sm之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OBx軸上,反比例函數(shù)y1=(x>0)的圖象經(jīng)過(guò)菱形對(duì)角線(xiàn)的交點(diǎn)A,且交另一邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).

(1)求反比例的函數(shù)的解析式;

(2)設(shè)經(jīng)過(guò)B,C兩點(diǎn)的一次函數(shù)的解析式為y2=mx+b,求y1<y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)D,E分別在邊ABAC上,將∠A沿著DE所在直線(xiàn)折疊,AA重合,若∠1+2140°,則∠A的度數(shù)是( 。

A.70°B.75°C.80°D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=2x+4,

(1)在如圖所示的平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象.

(2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo).

(3)利用圖象直接寫(xiě)出:當(dāng)y<0時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案