精英家教網 > 初中數學 > 題目詳情
如圖、已知∠AOB=30°,OC平分∠AOB,P為OC上任意一點,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的長.
精英家教網
分析:過P作PF⊥OB于F,根據角平分線的定義可得∠AOC=∠BOC=15°,根據平行線的性質可得∠DPO=∠AOP=15°,從而可得PD=OD,再根據30度所對的邊是斜邊的一半可求得PF的長,最后根據角平分線的性質即可求得PE的長.
解答:精英家教網解:過P作PF⊥OB于F,
∵∠AOB=30°,OC平分∠AOB,
∴∠AOC=∠BOC=15°,
∵PD∥OA,
∴∠DPO=∠AOP=15°,
∴∠BOC=∠DPO,
∴PD=OD=4cm,
∵∠AOB=30°,PD∥OA,
∴∠BDP=30°,
∴在Rt△PDF中,PF=
1
2
PD=2cm,
∵OC為角平分線,PE⊥OA,PF⊥OB,
∴PE=PF,
∴PE=PF=2cm.
點評:此題主要考查:(1)含30°度的直角三角形的性質:在直角三角形中,30°角所對的直角邊等于斜邊的一半.
(2)角平分線的性質:角的平分線上的點到角的兩邊的距離相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點,用直尺和圓規(guī)作一點P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關于直線l1對稱的△A1B1C1;再作△A1B1C1關于直線l2對稱的△A2B2C2;再作△A2B2C2關于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計算

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數;
(2)若∠AOC=x°,∠EOF=y°.則請用x的代數式來表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點N為OB上一個定點.通過畫圖可以知道:當∠AOB=45°時,在射線OC上存在點P,使△ONP成為等腰三角形,且符合條件的點有三個,即P1(頂點為P2),P2(頂點為0),P3(頂點為N).
試問:當∠AOB分別為銳角、直角、鈍角時,在射線OC上使△ONP成為等腰三角形的點P是否仍然存在三個?請分別畫出簡圖并加以說明.

查看答案和解析>>

同步練習冊答案