【題目】(本題滿分5分)畫圖并填空:
如圖,在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點C的對應點C′.
(1)畫出平移后的△A′B′C′,(利用網(wǎng)格點和三角板畫圖)
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)在平移過程中高CD掃過的面積為 .(網(wǎng)格中,每一小格單位長度為1)
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,將△COD繞點O按逆時針方向旋轉得到△C1OD1 , 旋轉角為θ(0°<θ<90°),連接AC1、BD1 , AC1與BD1交于點P.
(1)如圖1,若四邊形ABCD是正方形.請直接寫出AC1 與BD1的數(shù)量關系和位置關系.
(2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,判斷AC1與BD1的數(shù)量關系和位置關系,并給出證明;
(3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1 , 設AC1=kBD1 , 請直接寫出k的值和AC12+(kDD1)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等邊三角形,點D是BC上一點,點E在CA的延長線上,連結EB、ED,且EB=ED.
(1)求證:∠DEC=∠ABE;
(2)點D關于直線EC的對稱點為M,連接EM、BM:
①依題意將圖2補全;
②求證:EB=BM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H;下列結論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結論有______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為米、寬為米的長方形地塊該長方形地塊。該長方形地塊正中間是一個長為米的長方形,四個角是大小相同的正方形,該小區(qū)計劃
將如圖陰影部分進行綠化,對四個角的四個正方形采用A綠化方案,對正中間的長方形采用B綠化方案.
(1)采用A綠化方案的每個正方形邊長是多少米,采用B綠化方案的長方形另一邊長是多少米(用含的代數(shù)式表示);
(2)若采用A、B兩種綠化方案的總造價相同,均為2700元,請你判斷哪種方案單位面積造價高?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該店主購進這兩種禮盒恰好用去9600元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?
(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF,將∠BEF對折,點B落在直線EF上的B′處,得到折痕EC,將點A落在直線EF上的點A′處,得到折痕EN.
(1)若∠BEB′=110°,則∠BEC=°,∠AEN=°,∠BEC+∠AEN°.
(2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由.
(3)將∠ECF對折,點E剛好落在F處,且折痕與B′C重合,求∠DNA′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為 的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線l上,AB與AG在同一直線上.
(1)圖1中,小明發(fā)現(xiàn)DG=BE,請你幫他說明理由.
(2)小明將正方形ABCD按如圖2那樣繞點A旋轉一周,旋轉到當點C恰好落在直線l上時,請你直接寫出此時BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com