16.先化簡:$\frac{{x}^{2}+x}{{x}^{2}-2x+1}$÷($\frac{2}{x-1}$-$\frac{1}{x}$),再從-2<x<3的范圍內(nèi)選取一個你喜歡的x值代入求值.

分析 原式括號中兩項(xiàng)通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,確定出x的值,代入計算即可求出值.

解答 解:原式=$\frac{x(x+1)}{(x-1)^{2}}$÷$\frac{2x-x+1}{x(x-1)}$=$\frac{x(x+1)}{(x-1)^{2}}$•$\frac{x(x-1)}{x+1}$=$\frac{{x}^{2}}{x-1}$,
當(dāng)x=2時,原式=4(x≠-1,0,1).

點(diǎn)評 此題考查了分式的化簡求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.在?ABCD中,∠A=55°,則∠C的大小為( 。
A.135°B.125°C.115°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,將△OAB繞點(diǎn)O逆時針旋轉(zhuǎn)80°,得到△OCD,若∠A=2∠D=100°,則∠α的度數(shù)是( 。
A.50°B.60°C.40°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,將矩形紙片ABCD沿對角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.試找出一個與△AED全等的三角形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在平行四邊形ABCD中,BM是∠ABC的平分線交CD于點(diǎn)M,且MC=2,平行四邊形ABCD的周長是14,則DM等于3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.計算:(x-3)(3+x)-(x2+x-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,△ABC中,AB=AC=10,BC=12,動點(diǎn)P從A點(diǎn)出發(fā),按A→B的方向在AB上移動,動點(diǎn)Q從B點(diǎn)出發(fā),按B→C的方向在BC上移動(當(dāng)P點(diǎn)到達(dá)點(diǎn)B時,P點(diǎn)和Q點(diǎn)停止移動,且兩點(diǎn)的移動速度相等),記PA=x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,拋物線y=ax2+bx+4經(jīng)過點(diǎn)A(-2,0),B(6,0),與y軸交于C.
(1)a=-$\frac{1}{3}$,b=$\frac{4}{3}$,拋物線的對稱軸是直線x=2,頂點(diǎn)坐標(biāo)為(2,$\frac{16}{3}$);
(2)M是AC的中點(diǎn),MN⊥AC交x軸于N,求直線MN的解析式y(tǒng)=kx+b;
(3)點(diǎn)P在拋物線的對稱軸上,點(diǎn)Q在x軸上,當(dāng)四邊形ACPQ是軸對稱圖形時,求點(diǎn)P的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.一個不透明的袋子中有1個紅球,2個黃球,3個白球,除顏色不同外,其他各方面都相同,現(xiàn)從中隨機(jī)摸出一個球:①這球是“紅球”;②這球是“黃球”;③這球是“白球”,將這些事件的序號按發(fā)生的可能性從大到小的順序排列為③②①.

查看答案和解析>>

同步練習(xí)冊答案