【題目】(感知)如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,過點(diǎn)軸,垂足為點(diǎn),易知,得到點(diǎn)的坐標(biāo)為

(探究)如圖2,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段

(1)求點(diǎn)的坐標(biāo).(用含的代數(shù)式表示)

2)求出BC所在直線的函數(shù)表達(dá)式.

(拓展)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,連結(jié),則的最小值為_______.

【答案】【探究】(1)點(diǎn)坐標(biāo)為;(2;【拓展】

【解析】

探究:1)證明△AOC≌△CMBAAS),即可求解;
2)根據(jù)點(diǎn)B的坐標(biāo)為(mm+1),點(diǎn)坐標(biāo),即可求解;
拓展:BO+BA=,BO+BA的值,相當(dāng)于求點(diǎn)Pm,m)到點(diǎn)M1,-1)和點(diǎn)N0-1)的最小值,即可求解.

解:探究:(1)過點(diǎn)軸,垂足為點(diǎn)

線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,

,

點(diǎn)坐標(biāo),點(diǎn)坐標(biāo)

點(diǎn)坐標(biāo)為

2)∵點(diǎn)B的坐標(biāo)為(m,m+1),點(diǎn)C為(0,m),

設(shè)直線BC為:y=kx+b,

,解得:,

BC所在的直線為:

拓展:如圖作BHOHH

設(shè)點(diǎn)C的坐標(biāo)為(0m),
由(1)知:OC=HB=mOA=HC=1,
則點(diǎn)Bm,1+m),
則:BO+BA=,
BO+BA的值,相當(dāng)于求點(diǎn)Pmm)到點(diǎn)M1,-1)和點(diǎn)N0-1)的最小值,
相當(dāng)于在直線y=x上尋找一點(diǎn)Pmm),使得點(diǎn)PM0,-1),到N1-1)的距離和最小,

M關(guān)于直線y=x的對(duì)稱點(diǎn)M′(-10),
易知PM+PN=PM+PNNM′,
MN=,
故:BO+BA的最小值為,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)PAB的延長(zhǎng)線上,點(diǎn)C在⊙O上,且PC2PBPA

1)求證:PC是⊙O的切線;

2)已知PC20,PB10,點(diǎn)D的中點(diǎn),DEAC,垂足為EDEAB于點(diǎn)F,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,等邊三角形的邊長(zhǎng)為2,邊上的任一點(diǎn)(不重合),設(shè),連接,以為邊向兩側(cè)作等邊三角形和等邊三角形,分別與邊交于點(diǎn)

(1)求證:;

(2)求四邊形與△ABC重疊部分的面積之間的函數(shù)關(guān)系式及的最小值;

(3)如圖②,連接,分別與邊交于點(diǎn).當(dāng)為何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)作直線的垂線,垂足為點(diǎn),過點(diǎn)軸,垂足為點(diǎn),過點(diǎn),垂足為點(diǎn),這樣依次下去,得到一組線段,則線段的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),,直線軸于點(diǎn),且與拋物線交于,兩點(diǎn),為拋物線上一動(dòng)點(diǎn)(不與,重合).

1)求拋物線的解析式;

2)當(dāng)點(diǎn)在直線下方時(shí),過點(diǎn)軸交于點(diǎn),軸交于點(diǎn),求的最大值.

3)設(shè)為直線上的點(diǎn),以,,為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ABCD,BCCD,AB2CD3,在BC上取點(diǎn)PPBC不重合)連接PA延長(zhǎng)至E,使PA2AE,連接PD并延長(zhǎng)至F,使PD3FD,以PE、PF為邊作平行四邊形,另一個(gè)頂點(diǎn)為G,則PG長(zhǎng)度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,CB=2,點(diǎn)E為線段AB上的動(dòng)點(diǎn),將CBE沿CE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,下列結(jié)論正確的是_____(寫出所有正確結(jié)論的序號(hào))

①當(dāng)E為線段AB中點(diǎn)時(shí),AFCE;

②當(dāng)E為線段AB中點(diǎn)時(shí),AF=;

③當(dāng)A、F、C三點(diǎn)共線時(shí),AE=;

④當(dāng)A、F、C三點(diǎn)共線時(shí),CEF≌△AEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形 ABCD中,ABAD,∠BAD60°,邊BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°得到BE,邊DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°得到DF,四邊形ABEG和四邊形ADFH為平行四邊形.

1)如圖1,若BCCD,∠BCD120°,則∠GCH_______°;

2)如圖2,若BC≠CD,探究∠GCH的大小是否發(fā)生變化,并證明你的結(jié)論;

3)如圖3,若∠BCD=∠ADC90°,AB請(qǐng)直接寫出△AGH的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)任務(wù):

黃金分割

天文學(xué)家開普勒把黃金分割稱為神圣分割,并指出畢達(dá)哥拉斯定理(勾股定理)和黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠寶,歷史上最早正式在書中使用“黃金分割”這個(gè)名稱的是歐姆,19世紀(jì)以后“黃金分割”的說法逐漸流行起來,黃金分割被廣泛應(yīng)用于建筑等領(lǐng)域.黃金分割指把一條線段分為兩部分,使其中較長(zhǎng)部分與線段總長(zhǎng)之比等于較短部分與較長(zhǎng)部分之比,該比值為.用下面的方法(如圖①)就可以作出已知線段的黃金分割點(diǎn)

①以線段為邊作正方形,

②取的中點(diǎn),連接,

③延長(zhǎng),使,

④以線段為邊作正方形,點(diǎn)就是線段的黃金分割點(diǎn).

以下是證明點(diǎn)就是線段的黃金分割點(diǎn)的部分過程:

證明:設(shè)正方形的邊長(zhǎng)為1,則,

中點(diǎn),

,

中,,

,

,

,

任務(wù):

1)補(bǔ)全題中的證明過程;

2)如圖②,點(diǎn)為線段的黃金分割點(diǎn),分別以為邊在線段同側(cè)作正方形和矩形,連接.求證:

3)如圖③,在正五邊形中,對(duì)角線分別交于點(diǎn)求證:點(diǎn)的黃金分割點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案