【題目】B于E,交CD于F,連接DE、BF
(1)求證:四邊形DEBF是平行四邊形;
(2)當EF與BD滿足條件時,四邊形DEBF是菱形.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴DO=BO,DC∥AB,
∴∠CDO=∠OBA,
在△DOF和△BOE中
∵ ,
∴△DOF≌△BOE(ASA),
∴EO=FO,
即DO=BO,EO=FO,
∴四邊形DEBF是平行四邊形
(2)EF⊥BD
【解析】(2)解:當EF⊥BD時,四邊形DEBF是菱形, 理由:∵四邊形DEBF是平行四邊形,EF⊥BD,
∴平行四邊形DEBF時菱形.
所以答案是:EF⊥BD.
【考點精析】認真審題,首先需要了解平行四邊形的判定與性質(若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積),還要掌握菱形的判定方法(任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】關于的二次函數y=x2+2kx+k-1,下列說法正確的是( )
A. 對任意實數k,函數與x軸都沒有交點
B. 存在實數n,滿足當時,函數y的值都隨x的增大而減小
C. 不存在實數n,滿足當時,函數y的值都隨x的增大而減小
D. 對任意實數k,拋物線都必定經過唯一定點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知B、E分別是線段AC、DF的中點,AC=DF,BF交CD于點H,AE交CD于點G,CH=HG=DG,BH=GE.
(1)填空:因為B、E分別是線段AC、DF的中點,所以CB=________AC,DE=________DF.因為AC=DF,所以CB=________.在△CBH和△DEG中,因為CB=________,CH=________,BH=________EG,所以________≌________(SSS).
(2)除了(1)中的全等三角形外,請你再寫出另外一對全等三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家里的陽臺地面,水平鋪設著僅黑白顏色不同的18塊方磚(如圖),他從房間里向陽臺拋小皮球,小皮球最終隨機停留在某塊方磚上.
(1)求小皮球分別停留在黑色方磚與白色方磚上的概率.
(2)(1)中哪個概率較大?要使這兩個概率相等,應改變哪塊方磚的顏色?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com