【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).

【答案】
(1)證明:∵將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,

∴CD=CE,∠DCE=90°,

∵∠ACB=90°,

∴∠BCD=90°﹣∠ACD=∠FCE,

在△BCD和△FCE中,

,

∴△BCD≌△FCE(SAS).


(2)解:由(1)可知△BCD≌△FCE,

∴∠BDC=∠E,∠BCD=∠FCE,

∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,

∵EF∥CD,

∴∠E=180°﹣∠DCE=90°,

∴∠BDC=90°.


【解析】(1)由旋轉(zhuǎn)的性質(zhì)可得:CD=CE,再根據(jù)同角的余角相等可證明∠BCD=∠FCE,再根據(jù)全等三角形的判定方法即可證明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,進而可求出∠BDC的度數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:(3.14﹣π)0+(﹣ 2﹣2sin30°;
(2)化簡: ÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點P從點B開始沿折線BC﹣CD﹣DA以1cm/s的速度運動到點A.設(shè)點P運動的時間為t(s),△PAB面積為S(cm2).
(1)當t=2時,求S的值;
(2)當點P在邊DA上運動時,求S關(guān)于t的函數(shù)表達式;
(3)當S=12時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,一次函數(shù)y=﹣ x+b(b為常數(shù),b>0)的圖象與x軸、y軸分別相交于點A、B,半徑為4的⊙O與x軸正半軸相交于點C,與y軸相交于點D、E,點D在點E上方.
(1)若直線AB與 有兩個交點F、G. ①求∠CFE的度數(shù);
②用含b的代數(shù)式表示FG2 , 并直接寫出b的取值范圍;
(2)設(shè)b≥5,在線段AB上是否存在點P,使∠CPE=45°?若存在,請求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( )

A.4km
B.2 km
C.2 km
D.( +1)km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=a(x2﹣2mx﹣3m2)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點A、B(點A位于點B的左側(cè)),與y軸交于C(0,﹣3),點D在二次函數(shù)的圖象上,CD∥AB,連接AD,過點A作射線AE交二次函數(shù)的圖象于點E,AB平分∠DAE.

(1)用含m的代數(shù)式表示a;
(2)求證: 為定值;
(3)設(shè)該二次函數(shù)圖象的頂點為F,探索:在x軸的負半軸上是否存在點G,連接GF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點G即可,并用含m的代數(shù)式表示該點的橫坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自來水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設(shè)一條輸水管道.為了搞好工程預算,需測算出A,B間的距離.一小船在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.

(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】江漢平原享有“中國小龍蝦之鄉(xiāng)”的美稱,甲、乙兩家農(nóng)貿(mào)商店,平時以同樣的價格出售品質(zhì)相同的小龍蝦,“龍蝦節(jié)”期間,甲、乙兩家商店都讓利酬賓,付款金額y、y(單位:元)與原價x(單位:元)之間的函數(shù)關(guān)系如圖所示:
(1)直接寫出y , y關(guān)于x的函數(shù)關(guān)系式;
(2)“龍蝦節(jié)”期間,如何選擇甲、乙兩家商店購買小龍蝦更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為個.

查看答案和解析>>

同步練習冊答案