【題目】如圖,自來水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設一條輸水管道.為了搞好工程預算,需測算出A,B間的距離.一小船在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.

(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

【答案】
(1)

解:線段BQ與PQ相等.

證明:∵∠PQB=90°﹣41°=49°,

∠BPQ=90°﹣24.5°=65.5°,

∴∠PBQ=180°﹣49°﹣65.5°=65.5°,

∴∠BPQ=∠PBQ,

∴BQ=PQ


(2)

解:∠AQB=180°﹣49°﹣41°=90°,

∠PQA=90°﹣49°=41°,

∴AQ= =1600,

BQ=PQ=1200,

∴AB2=AQ2+BQ2=16002+12002,

∴AB=2000,

答:A、B的距離為2000m


【解析】(1)首先由已知求出∠PBQ和∠BPQ的度數(shù)進行比較得出線段BQ與PQ是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根據(jù)勾股定理求出A,B間的距離.
【考點精析】通過靈活運用關于方向角問題,掌握指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校課外興趣小組在本校學生中開展“感動中國2013年度人物”先進事跡知曉情況專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06


(1)表中的a= , b=;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計圖中類別為B的學生數(shù)所對應的扇形圓心角的度數(shù);
(3)若該校有學生1000名,根據(jù)調(diào)查結果估計該校學生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點A(2,0),B(0,4),∠AOB的平分線交AB于C,一動點P從O點出發(fā),以每秒2個單位長度的速度,沿y軸向點B作勻速運動,過點P且平行于AB的直線交x軸于Q,作P、Q關于直線OC的對稱點M、N.設P運動的時間為t(0<t<2)秒.

(1)求C點的坐標,并直接寫出點M、N的坐標(用含t的代數(shù)式表示);
(2)設△MNC與△OAB重疊部分的面積為S.
①試求S關于t的函數(shù)關系式;
②在圖2的直角坐標系中,畫出S關于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關于x軸對稱的圖形△A1B1C1;

2)求出A1B1,C1三點坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課題研究小組就圖形面積問題進行專題研究,他們發(fā)現(xiàn)如下結論: ①有一條邊對應相等的兩個三角形面積之比等于這條邊上的對應高之比;
②有一個角對應相等的兩個三角形面積之比等于夾這個角的兩邊乘積之比;

現(xiàn)請你繼續(xù)對下面問題進行探究,探究過程可直接應用上述結論.(S表示面積)

問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1 , P2三等分邊AB,R1 , R2三等分邊AC.經(jīng)探究知 = SABC , 請證明.
問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1 , Q2三等分邊DC.請?zhí)骄? 與S四邊形ABCD之間的數(shù)量關系.
問題3:如圖3,P1 , P2 , P3 , P4五等分邊AB,Q1 , Q2 , Q3 , Q4五等分邊DC.若S四邊形ABCD=1,求
問題4:如圖4,P1 , P2 , P3四等分邊AB,Q1 , Q2 , Q3四等分邊DC,P1Q1 , P2Q2 , P3Q3將四邊形ABCD分成四個部分,面積分別為S1 , S2 , S3 , S4 . 請直接寫出含有S1 , S2 , S3 , S4的一個等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加強防汛工作,某市對一攔水壩進行加固,如圖,加固前攔水壩的橫斷面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后攔水壩的橫斷面為梯形ABED,tanE= ,則CE的長為米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應政府提出的“綠色發(fā)展低碳出行”號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買3輛男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.

(1)求∠APB的度數(shù);
(2)已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

同步練習冊答案