如圖1,拋物線與x軸交于B(3,0) 、C(8.0)兩點(diǎn),拋物線另有一點(diǎn)A在第一象限內(nèi),連接AO、AC,且AO=AC.

1.求拋物線的解析式;

2.將△OAC繞x軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積;

3.如圖2,將△OAC沿x軸翻折后得△ODC,設(shè)垂直于x軸的直線l:x=n與(1)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上A、C兩點(diǎn)之間時(shí),試探究:當(dāng)n為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.

                                

 

【答案】

 

1.--------------4分(其中方程組正確2分)

2.在圖1中作AHx軸于H, -----------------5分

則OH=4,               ------------------6分

當(dāng)x=4時(shí),y=2 所經(jīng)A(4,2),OA= ----------7分

表面積===--------------------------8分

3.連接AD,交OC于E,----------------------------------9分

則OE=4,BE=OE-OB=1,EC=4

     利用三角形相似(略)可得AE=2,所以DE=2, D(4,-2)

由C(8,0)、D(4,-2)得直線CD解析式, --------10分

得N(n,0.5n-4)

     由拋物線,得M(

所以MN=------------11分

四邊形AMCN的面積=0.5MN×CE=0.5×()×4

              =

所以,當(dāng)n=5時(shí),四邊形AMCN的面積取得最大值,這個(gè)最大值是9. -------12分

【解析】(1)把B、C兩點(diǎn)坐標(biāo)代入方程組得出二次函數(shù)的解析式;

(2)先用勾股定理求出OA長(zhǎng),然后利用表面積公式求解;

(3)先求出四邊形面積的表達(dá)式,然后根據(jù)一元二次函數(shù)的性質(zhì)求出面積最大值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

己知:拋物線y=x2-(k+1)x+k
(1)試求k為何值時(shí),拋物線與x軸只有一個(gè)公共點(diǎn);
(2)如圖,若拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的負(fù)半軸交于點(diǎn)C,精英家教網(wǎng)試問(wèn):是否存在實(shí)數(shù)k,使△AOC與△COB相似?若存在,求出相應(yīng)的k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一拋物線與x軸相交于A、B兩點(diǎn),與y軸正半軸交于點(diǎn)C,對(duì)稱軸x=
3
2
與x軸相交于點(diǎn)精英家教網(wǎng)E,且OC=2,tan∠ACO=
1
2

(1)求拋物線的解析式;
(2)在對(duì)稱軸上找一點(diǎn)D,使△ADC周長(zhǎng)最短,求此時(shí)線段DE的長(zhǎng);
(3)探究:在(1)中拋物線上是否存在點(diǎn)P,使PB=PC?若存在,求出P的坐標(biāo),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,拋物線數(shù)學(xué)公式與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線y=kx+b交于A、D兩點(diǎn).
(1)直接寫(xiě)出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;
(2)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖, 已知拋物線與x軸相交于A、B,點(diǎn)B的坐標(biāo)為(10,0),頂點(diǎn)M的坐標(biāo)為(4,8),點(diǎn)P從點(diǎn)M出發(fā),以每秒1個(gè)單位的速度沿線段MA向A點(diǎn)運(yùn)動(dòng);點(diǎn)Q從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿AB向B點(diǎn)運(yùn)動(dòng),若P、Q同時(shí)出發(fā),當(dāng)其中的一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒鐘。

(1)求拋物線的解析式;

(2)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式,△APQ的面積是否有最大值?若有,請(qǐng)求出其最大值;若沒(méi)有,請(qǐng)說(shuō)明理由;

(3)當(dāng)t為何值時(shí),△APQ為等腰三角形?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案