解:(1)A點(diǎn)坐標(biāo):(-3,0),C點(diǎn)坐標(biāo):C(4,0);
直線AD解析式:.
(2)由拋物線與直線解析式可知,當(dāng)m=-1時(shí),-≤n≤,當(dāng)m=1時(shí),-1≤n≤,
當(dāng)m=3時(shí),-≤n≤,當(dāng)m=4時(shí),-≤n≤0,
所有可能出現(xiàn)的結(jié)果如下:
第一次 第二次 | -1 | 1 | 3 | 4 |
-1 | (-1,-1) | (-1,1) | (-1,3) | (-1,4) |
1 | (1,-1) | (1,1) | (1,3) | (1,4) |
3 | (3,-1) | (3,1) | (3,3) | (3,4) |
4 | (4,-1) | (4,1) | (4,3) | (4,4) |
總共有16種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,而落在圖1中拋物線與直線圍成區(qū)域內(nèi)的結(jié)果有7種:
(-1,1),(1,-1),(1,1),(1,3),(3,-1),(3,1),(4,-1).
因此P(落在拋物線與直線圍成區(qū)域內(nèi))=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖, 已知拋物線與x軸相交于A、B,點(diǎn)B的坐標(biāo)為(10,0),頂點(diǎn)M的坐標(biāo)為(4,8),點(diǎn)P從點(diǎn)M出發(fā),以每秒1個(gè)單位的速度沿線段MA向A點(diǎn)運(yùn)動(dòng);點(diǎn)Q從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿AB向B點(diǎn)運(yùn)動(dòng),若P、Q同時(shí)出發(fā),當(dāng)其中的一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒鐘。
(1)求拋物線的解析式;
(2)設(shè)△APQ的面積為S,求S與t之間的函數(shù)關(guān)系式,△APQ的面積是否有最大值?若有,請(qǐng)求出其最大值;若沒有,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△APQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇響水初三第二次模擬數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,拋物線與x軸交于B(3,0) 、C(8.0)兩點(diǎn),拋物線另有一點(diǎn)A在第一象限內(nèi),連接AO、AC,且AO=AC.
1.求拋物線的解析式;
2.將△OAC繞x軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積;
3.如圖2,將△OAC沿x軸翻折后得△ODC,設(shè)垂直于x軸的直線l:x=n與(1)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上A、C兩點(diǎn)之間時(shí),試探究:當(dāng)n為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com