精英家教網(wǎng)如圖,已知Rt△ABC,∠ACB=90°,∠ABC=30°,AB=2,分別以△ABC的三條邊為直徑作半圓,則圖中陰影部分的面積S1、S2、S3之間關(guān)系成立的是( 。
A、S1+S2+S3B、S1+S2=S3C、S1+S2>S3D、S1+S2<S3
分析:連接OC,根據(jù)三角形的面積公式,以及扇形的面積公式分別求得S1、S2、S3的值,然后即可判斷.
解答:精英家教網(wǎng)解:連接OC.
∵Rt△ABC,∠ACB=90°,∠ABC=30°,AB=2,
∴AC=1,BC=
3

以AC為直徑的半圓的面積是
1
2
π(
1
2
2=
1
8
π,
以BC為直徑的半圓的面積是:
1
2
π(
3
2
2=
3
8
π.
則S1=
1
8
π+S△AOC-扇形OAC=
1
8
π+
3
4
-
60π×22
360
=
3
4
-
13π
24
,
同理,S2=
13π
24
+
3
4
,
S3=
1
2
AC•BC=
1
2
×1×
3
=
3
2

則各個(gè)選項(xiàng)中只有B正確.
故選B.
點(diǎn)評(píng):本題主要考查了扇形的面積公式,三角形的面積公式,正確求得S1、S2、S3的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)

(2)請(qǐng)你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過(guò)點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長(zhǎng)線上一點(diǎn),PE⊥AB交BA延長(zhǎng)線于E,PF⊥AC交AC延長(zhǎng)線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過(guò)點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長(zhǎng);
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案